Home
Class 11
MATHS
If alpha and beta are the solutions of a...

If `alpha and beta` are the solutions of `acostheta + bsintheta = c`, show that `sinalpha+sinbeta=(2bc)/(a^2+b^2)` and `sinalpha sinbeta=(c^2-a^2)/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then show that "cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2) (ii) cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha,beta are the solutions of the equation acostheta+bsintheta=c, " where "a,b,c inRand " if " a^(2)+b^(2)gt0,cosalphanecosbeta and sin alphane sinbeta then show that (i) sinalpha+sinbeta=(2bc)/(a^(2)+b^(2)) (ii) sinalpha.sinbeta=(c^(2)-a^(2))/(a^(2)+b^(2))

If alpha,beta are the solutions of the equation acostheta+bsintheta=c, " where "a,b,c inRand " if " a^(2)+b^(2)gt0,cosalphanecosbeta and sin alphane sinbeta then S.T sinalpha+sinbeta=(2bc)/(a^(2)+b^(2))

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If alpha+beta=90^@ and alpha:beta=2:1 then sinalpha:sinbeta=