Home
Class 11
MATHS
a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^...

`a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B)=0` .

Text Solution

AI Generated Solution

To prove the equation \( a^2(\cos^2 B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B) = 0 \), we will follow these steps: ### Step 1: Rewrite the Cosine Squares We know that \( \cos^2 X = 1 - \sin^2 X \). Therefore, we can rewrite each cosine square in the equation: \[ \cos^2 B = 1 - \sin^2 B, \quad \cos^2 C = 1 - \sin^2 C, \quad \cos^2 A = 1 - \sin^2 A \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SETS

    RD SHARMA|Exercise Solved Examples And Exercises|218 Videos
  • SOME SPECIAL SERIES

    RD SHARMA|Exercise Solved Examples And Exercises|69 Videos

Similar Questions

Explore conceptually related problems

In any Delta ABC, prove that :a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

In any triangle ABC, prove that following: (cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

Knowledge Check

  • cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B

    A
    `sin^(2)A -cos^(2)B`
    B
    `cos^(2)A -sin^(2)B`
    C
    `sin^(2)A -sin^(2)B`
    D
    `cos^(2)A -cos^(2)B`
  • cos2A + cos 2B + cos 2C=

    A
    `1+4cos A cos B sin C`
    B
    `-1 + 4 sin A sin B cos C`
    C
    `-1-4 cos A cos B cos C`
    D
    none of these
  • cos^(2) A + cos^(2) B + cos^(2) C =

    A
    `1-2 sin A sin B sin C`
    B
    `1-2 cos A cos B cos C`
    C
    `1+sin A sin B sin C`
    D
    `1+ cos A cos B cos C `
  • Similar Questions

    Explore conceptually related problems

    a(cos C-cos B)=2(b-c)cos^(2)(A)/(2)

    In /_ABC prove that (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

    In any Delta ABC, prove that :(b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

    If any triangle ABC, that: (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

    In a /_ABC, prove that cos^(2)(2A)+cos^(2)(2B)+cos^(2)(2C)=1+2cos2A cos2B cos2C