Home
Class 11
MATHS
Let (x,y,z) = sin^2x + sin^2y + sin^2z....

Let `(x,y,z) = sin^2x + sin^2y + sin^2z`.On the basis of above information, answer the following questions :If `x + y + z = 2pi`, then `f (x, y, z) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z= (pi)/(2) show that sin 2x + sin 2y + sin 2z =4 cos x cosy cos z

cos x + cos y + cos z = 0 and sin x + sin y + sin z, then cos ^(2) (( x-y)/( 2)) =

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

Prove that sin (x + y ) sin (x -y) + sin ( y+ z) sin (y - z) + sin (z+x) sin (z-x) = 0.

What is the value of [sin (y – z) + sin (y + z) + 2 sin y]/[sin (x – z) + sin (x + z) + 2 sin x]?

Let sin^(-1) x + sin^(-1) y + sin^(-1) z = (3pi)/2 for 0 le x, y, z le 1 .What is the value of x^(1000) + y^(1001) + z^(1002) ?

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

If sin^-1x + sin^-1 y + sin^-1 z = pi , prove that x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2)