Home
Class 12
MATHS
lim(x->pi/2)tanxlogesinx=...

`lim_(x->pi/2)tanxlog_esinx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following are true? lim_(x->pi/2+) tan x=oo , lim_(x->pi/2-) tanx=oo , lim_(x->pi/2) tanx=oo , lim_(x->pi/2) tanx=does not exist

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

lim_(xto pi/2)(2x-pi)/cosx

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

Evaluate: lim_(x->oo)x(tan^(-1)((x+1)/(x+4))-pi/4)

Evaluate: lim_(x->oo)x(tan^(-1)((x+1)/(x+4))-pi/4)

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))