Home
Class 11
MATHS
L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in...

`L e t` `f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2],` If`f(x)i s` continuous in `[0,pi/4],` then find the value of `f(pi/4)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1-tan x)/(4x-pi),x!=(pi)/(4),x in[0,(pi)/(2)], If f(x) is continuous in [0,(pi)/(4)], then find the value of f((pi)/(4))

Let f(x)=(1-tan x)/(4x-pi), x ne pi/4, x in [0,pi/2]." If f(x) is continuous in "[0,pi/4]," then "f(pi/4)is

Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2] . If f(x) is continuous in [0,(pi)/2] , then f((pi)/(4)) is

Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2] . If f(x) is continuous in [0,(pi)/2] , then f((pi)/(4)) is

Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)] , if f(x) is continuous in [0, (pi)/(4)] , then f((pi)/(4)) is :

Let f(x)= (1-tanx)/(4x-pi) when 0 le x le (pi)/(2) and x ne (pi)/(4) , if f(x) is continuous at x=(pi)/(4) , then the value of f((pi)/(4)) is -

If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is continuous at x=(pi)/(4) then the value of k is

Let f(x) =(1- tanx)/(4x-pi) when 0 le x lt pi/2 and x ne pi/4, If f (x) is defined at x =pi/4, then the value of f ((pi)/(4)) is-