Home
Class 11
MATHS
Prove that: sin((pi)/5)sin((2pi)/5)sin((...

Prove that: `sin((pi)/5)sin((2pi)/5)sin((3pi)/5)sin((4pi)/5)=5/(16)`

Text Solution

AI Generated Solution

To prove that \( \sin\left(\frac{\pi}{5}\right) \sin\left(\frac{2\pi}{5}\right) \sin\left(\frac{3\pi}{5}\right) \sin\left(\frac{4\pi}{5}\right) = \frac{5}{16} \), we can follow these steps: ### Step 1: Use the properties of sine We know that: \[ \sin\left(\frac{3\pi}{5}\right) = \sin\left(\pi - \frac{2\pi}{5}\right) = \sin\left(\frac{2\pi}{5}\right) \] and ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin((3pi)/(8)-5)cos((pi)/(8)+5)+cos((3pi)/(8)-5)sin((pi)/(8)+7)=1

sin((13pi)/3)sin((8pi)/3)+cos((2pi)/3)sin((5pi)/6)=1/2

Prove that: sin((pi)/(14))sin((3 pi)/(14))sin((5 pi)/(14))sin((7 pi)/(14))sin((9 pi)/(14))sin((11 pi)/(14))sin((13 pi)/(14))=(1)/(64)

Prove that "sin"(pi)/(14)"sin"(3pi)/(14)"sin"(5pi)/(14)"sin"(7pi)/(14)=(1)/(8)

sin(pi)/(4)*sin(3 pi)/(4)*sin(5 pi)/(4)*sin(7 pi)/(4)=

Prove that: sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2

sin(pi/18)sin(5 pi/18)sin(7 pi/18)

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

Prove that: sin^(4)((pi)/(8))+sin^(4)((3 pi)/(8))+sin^(4)((5 pi)/(8))+sin^(4)((7 pi)/(8))=(3)/(2)

Prove that: 2(sin pi)/(6)sec(pi)/(3)-4(sin(5 pi))/(6)(cos pi)/(4)=1