Home
Class 11
MATHS
The line y=mx+c is a normal to the ellip...

The line `y=mx+c` is a normal to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1,` if `c`

Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

The line L x+m y+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , if

Show that the line (ax)/(3)+(by)/(4)=c be a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , When 15c=a^(2)e^(2) where e is the eccentricity of the ellipse.

The line x-y + k =0 is normal to the ellipse (x^2)/(9) + (y^2)/(16)=1 , then k=

The condition that the line y=mx+c may be a secant to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is