Home
Class 12
MATHS
Let alpha,beta,gamma and delta are four ...

Let `alpha,beta,gamma and delta` are four positive real numbers such that their product is unity, then the least value of `(1+alpha)(1+beta)(1+gamma)(1+delta)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma,delta be four real numbers such that alpha^(2)+gamma^(2)=9 and beta^(2)+delta^(2)=1 ,then the maximum value of 3(alpha beta-gamma delta)+4(alpha delta+beta gamma) is

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents:

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents:

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) represents a A) circle B) parabola C)Ellipse D)straight line

If alpha,beta,gamma,delta are four complex numbers such that (gamma)/(delta) is real and alpha delta-beta gamma!=0 then z=(alpha+beta t)/(gamma+delta t) represents a

If alpha,beta,gamma and delta are roots of equation x^(4)-7x^(2)+x-5=0, then the value of (alpha+beta+gamma)(alpha+beta+delta)(beta+gamma+delta)(alpha+gamma+delta) is equal to

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is