Home
Class 12
MATHS
Compute the magnitude of the following v...

Compute the magnitude of the following vectors : `a = hat(i)+hat(j)+hat(k),b=2hat(i)-7hat(j)-3hat(k),c=(1)/(sqrt(3))hat(i)+(1)/(sqrt(3))hat(j)-(1)/(sqrt(3))hat(k)`.

Text Solution

Verified by Experts

Given , vector `a=hat(i) +hat(j)+hat(j)`. Comparting with `a=xhat(i)+yhat(j)+zhat(k)` we get `x=1,y=1,z=1`. The magnitude of given vector is `|vec(a)|=hat(i)+hat(j)+hat(k)=sqrt(x^2+y^2+z^2)=sqrt(1^2+1^2+2^2)=sqrt(3)` Similarly magnitude of `vec(b) =|vec(b)|=|2hat(i)-7hat(j)-3hat(k)|=sqrt(2^2+(-7)^2+(-3)^2)`
`=sqrt(4+49+9)=sqrt(62)`
and `=sqrt((2)^2+(1)^2+(-3)^2)=sqrt(4+1+9)=sqrt(14)`.
`|vec( c) |=sqrt(((1)/(sqrt(3)))^2+((1)/(sqrt(3)))^2+(-(1)/sqrt(3))^2)=sqrt((1)/(3)+(1)/(3)+(1)/(3))=1`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TWO MARKS/THREE MARKS QUESTIONS WITH ANSWERS|37 Videos
  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • TRIANGLES

    SUBHASH PUBLICATION|Exercise Exercise 5.7|1 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of the vector vec(a) = 3hat(i) +2hat(j) + 6hat(k) .

The magnitude of the vector 6hat(i) + 2hat(j) + 3hat(k) is ?

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .

Find the sum of vectos a = hat(i)- 2hat(j)+hat(k),b=-2hat(i)+4hat(j)+5hat(k) and c=hat(i)-6hat(j)-7hat(k) .

The unit vector perpendicular to the vectors hat(i) -hat(j) + hat(k), 2hat(i) + 3hat(j) -hat(k) is

Find the angle between the vectors vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

Write the projection of the vector 7hat(i) + hat(j) - 4hat(k) on the vector 2hat(i) + 6hat(j) + 3hat(k) .

Find the Cartesian equation of the following planes: r.(2hat(i)+3hat(j)-4hat(k))=1

Find the projection of the vector hat(i)+3hat(j)+7hat(k) on the vector 7hat(i)-hat(j)+8hat(k) .