Home
Class 12
MATHS
Show that the points A(1,2,7),B(2,6,3) a...

Show that the points `A(1,2,7),B(2,6,3) and C(3,10,-10` are collinear.

Text Solution

Verified by Experts

The gieven points are `A(1,2,7),B(2,6,3) and C(3,10,-1)`.
`therefore vec(AB)=PV of B-PV of A =(2hat(i)+6hat(j)+3hat(k))-(1hat(i)+2hat(j)+7hat(k))=(2-1)hat(i)+(6-2)hat(j)+(3-7)hat(k)=hat(i)+4hat(j)-4hat(k)`
Magnitude of `vec(AB),|vec(AB)|=sqrt(1)^2+(4)^2+(-4)^2)=sqrt(1+16+16)=sqrt(33)`
`vec(BC)=PV of C-PV of B=(3hat(i)+10hat(j)+1hat(k))-(hat(i)+6hat(j)+3hat(k))`.
`=(3-2)hat(i)+(10-6)hat(j)+(-1-3)hat(k)=hat(i)+4hat(j)-4hat(k)`
Magnitude of `vec(BC),|vec(BC)|=sqrt(1)^2+(4)^2+(-4)^2)=sqrt(1+16+16)=sqrt(33)`.
`vec(AC)=PV of C-PV of A=(3hat(i)+10hat(j)-1hat(k))-(1hat(i)+2hat(j)+7hat(k))`.
`=(3-1)hat(i)+(10-2)hat(j)+(-1-7)hat(k)=2hat(i)+8hat(j)-8hat(k)`
Magnitude of `vec(AC),|vec(AC)|=sqrt((2)^2+(8)^2+(8)^2)=sqrt(4+64+64)=sqrt(132)= 2sqrt(33)`
`=sqrt(33)+sqrt(33)`
`therefore |AC|=|AB|+|BC|`.
Hence , the given points A,B and C ARE coliinear.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • TRIANGLES

    SUBHASH PUBLICATION|Exercise Exercise 5.7|1 Videos

Similar Questions

Explore conceptually related problems

Show that the points A(1,3,2),B(-2,0,1) and C(4,6,3) are collinear.

Using distance formula, show that the points (1,5), (2,4) and (3,3) are collinear.

Show that the points A(1,-2,-8),B(5,0,-2)andC(11,3,7) are collinear , and find the ratio in which B divides AC.

Show that the points A (-2, 3, 5), B(1, 2, 3) and C(7, 0, -1) are collinear.

Show that the points A(1,-2,-8) , B(5,0,-2), C(11,3,7) are collinear.

Prove by using the distance formula that the points A (1,2,3), B (-1, -1, -1) and C (3,5,7) are collinear.

The points (a, 2 a),(-2,6) and (3,1) are collinear then a=

Using section formula prove that the point that the points A(-4,6,10) , B(2,4,6) C(14,0,-2) are collinear .

Prove that the ponts A(1,2,3),B(3,4,7),C(-3 ,-2, -5) are collinear

Show that the points (3, 2) (-2, -3) and (2, 3) are collinear or non-collinear.

SUBHASH PUBLICATION-VECTOR ALGEBRA -TWO MARKS/THREE MARKS QUESTIONS WITH ANSWERS
  1. Evaluate the product (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  2. Find the magnitude of two vectors vec(a) and vec(b) having the same ma...

    Text Solution

    |

  3. Find |x|, if for a unit vector a, (vec(x)-vec(a)).(vec(x)+vec(a))=12.

    Text Solution

    |

  4. If a=2hat(i)+2hat(j)+3hat(k),b=hat(i)+2hat(j)+hat(k) and c=3hat(i)+hat...

    Text Solution

    |

  5. Show that |a|b+|b| a is perpendicular to |a|b-|b| a for any two non- z...

    Text Solution

    |

  6. If a,b,c are unit vectors such that a+b+c=0, then find the value of a....

    Text Solution

    |

  7. If either a=0,b=0, then a.b=0. But the converse need not to be true . ...

    Text Solution

    |

  8. If the vertices A,B,C of a triangle ABC have position vectors (1,2,3),...

    Text Solution

    |

  9. Show that the points A(1,2,7),B(2,6,3) and C(3,10,-10 are collinear.

    Text Solution

    |

  10. Show that the vectors 2hat(i)-hat(j)+hat(k),hat(i)-3hat(j). And 3hat(i...

    Text Solution

    |

  11. Find |vec(a)xxvec(b)|, if a=hat(i) -7hat(j)+7k and b=3hat(i)-2hat(j)+2...

    Text Solution

    |

  12. Find a unit vector perpendicular to each of the vectors (veca+vecb) an...

    Text Solution

    |

  13. If a unit vector hat(a), makes angles (pi)/(3) with hat(i),(pi)/(4) wi...

    Text Solution

    |

  14. Show that (vec(a)-vec(b))xx(vec(a)+vec(b))=2 (vec(a)xxvec(b)).

    Text Solution

    |

  15. Find lambda and u, if (2hat(i)+6hat(j)+27hat(k))xx(hat(i)+lambdahat(j)...

    Text Solution

    |

  16. Given that a.b=0 and axxb=0. What can you conclude about the vectors a...

    Text Solution

    |

  17. Prove that [vec(a)+vec(b),vec(b)+vec( c) , vec( c) +vec(a)] =2 [vec(a)...

    Text Solution

    |

  18. Prove that [vec(a),vec(b),vec( c) +vec(d)]=[vec(a),vec(b),vec( c)] +[v...

    Text Solution

    |

  19. Find the volume of the parallelopiped whose cotermius edges are 2hat(i...

    Text Solution

    |

  20. Show that the vectors vec(a)=hat(i)-2hat(j)+3hat(k) vec(b)=-2i+3hat(j)...

    Text Solution

    |