Home
Class 12
MATHS
Show that the vectors 2hat(i)-hat(j)+hat...

Show that the vectors `2hat(i)-hat(j)+hat(k),hat(i)-3hat(j)`. And `3hat(i)-4hat(j)-3hat(k)`. Form the vertices of a right angled triangle.

Text Solution

Verified by Experts

Let `2hat(i)-hat(j)+hat(k),hat(i)-3hat(j)-5hat(k) and 3hat(i)-4hat(j)-4hat(k)`
`therefore` Side `vec(AB)=PV of B -PV of A=(hat(i)-3hat(j)-5hat(k))-(2hat(i)-hat(j)+hat(k))`
`=hat(i)-3hat(j)-5hat(k)-2hat(i)+hat(j)-hat(k)=-hat(i)-2hat(j)-6hat(k)`
`|vec(AB)|=sqrt((-1)^2+(-2)^2+(-6)^2)=sqrt(1+4+36)=sqrt(41)`
`vec(BC)=PV of C-PV of B=(3hat(i)-4hat(j)-4hat(k))-(hat(i)-3hat(j)-5hat(k))`
`=3hat(i)-4hat(j)-4hat(k)-hat(i)+3hat(j)+5hat(k)=2hat(i)-hat(j)+hat(k)`
`|vec(BC)|=sqrt(2^2+(-1)^2+1^2)=sqrt(4+1+1)=sqrt(6)`.
and ` vec(AC)=PV of C-PV of A =(3hat(i)-4hat(j)-4hat(k))-(2hat(i)-hat(j)+hat(k))`.
`=3hat(i)-4hat(j)-4hat(k)-2hat(i)+hat(j)-hat(k)=hat(i)-3hat(j)-5hat(k)`
`|vec(AC)|=sqrt(1^2+(-3)^2+(-5)^2)=sqrt(1+9+25)=sqrt(35)`
Now, `|vec(BC)|+|vec(AC)|^2=6+35=41=|vec(AB)|^2`.
Which shows that ABC is right angled triangle.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • TRIANGLES

    SUBHASH PUBLICATION|Exercise Exercise 5.7|1 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors 2hat(i)-3hat(j)+4hat(k) and -4hat(i)+6hat(j)-8hat(k) are collinear.

Show that the points A, B and C with position vectors , vec(a)=3hat(i)-4hat(j)-4hat(k),vec(b)=2hat(i) -hat(j)+hat(k) and vec (c ) hat(i) -3hat(j)-5hat(k) respectively, from the vertices of a right angled triangle.

The value of p such that the vectors hat(i) + 3hat(j) - 2hat(k), 2hat(i) - hat(j) + 4hat(k) and 3hat(i) + 2hat(j) + p hat(k) are coplanar is

Find the sum of vectos a = hat(i)- 2hat(j)+hat(k),b=-2hat(i)+4hat(j)+5hat(k) and c=hat(i)-6hat(j)-7hat(k) .

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .

The unit vector perpendicular to the vectors hat(i) -hat(j) + hat(k), 2hat(i) + 3hat(j) -hat(k) is

If the vectors 2hat(i) + 3hat(j) - 6hat(k) and 4hat(i) - m hat(j) - 12 hat(k) are parallel find m.

For what value of 'a' the vectors 2hat(i) - 3hat(j) + 4hat(k) and ahat(i) + 6hat(j) - 8hat(k) are collinear ?

SUBHASH PUBLICATION-VECTOR ALGEBRA -TWO MARKS/THREE MARKS QUESTIONS WITH ANSWERS
  1. Evaluate the product (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  2. Find the magnitude of two vectors vec(a) and vec(b) having the same ma...

    Text Solution

    |

  3. Find |x|, if for a unit vector a, (vec(x)-vec(a)).(vec(x)+vec(a))=12.

    Text Solution

    |

  4. If a=2hat(i)+2hat(j)+3hat(k),b=hat(i)+2hat(j)+hat(k) and c=3hat(i)+hat...

    Text Solution

    |

  5. Show that |a|b+|b| a is perpendicular to |a|b-|b| a for any two non- z...

    Text Solution

    |

  6. If a,b,c are unit vectors such that a+b+c=0, then find the value of a....

    Text Solution

    |

  7. If either a=0,b=0, then a.b=0. But the converse need not to be true . ...

    Text Solution

    |

  8. If the vertices A,B,C of a triangle ABC have position vectors (1,2,3),...

    Text Solution

    |

  9. Show that the points A(1,2,7),B(2,6,3) and C(3,10,-10 are collinear.

    Text Solution

    |

  10. Show that the vectors 2hat(i)-hat(j)+hat(k),hat(i)-3hat(j). And 3hat(i...

    Text Solution

    |

  11. Find |vec(a)xxvec(b)|, if a=hat(i) -7hat(j)+7k and b=3hat(i)-2hat(j)+2...

    Text Solution

    |

  12. Find a unit vector perpendicular to each of the vectors (veca+vecb) an...

    Text Solution

    |

  13. If a unit vector hat(a), makes angles (pi)/(3) with hat(i),(pi)/(4) wi...

    Text Solution

    |

  14. Show that (vec(a)-vec(b))xx(vec(a)+vec(b))=2 (vec(a)xxvec(b)).

    Text Solution

    |

  15. Find lambda and u, if (2hat(i)+6hat(j)+27hat(k))xx(hat(i)+lambdahat(j)...

    Text Solution

    |

  16. Given that a.b=0 and axxb=0. What can you conclude about the vectors a...

    Text Solution

    |

  17. Prove that [vec(a)+vec(b),vec(b)+vec( c) , vec( c) +vec(a)] =2 [vec(a)...

    Text Solution

    |

  18. Prove that [vec(a),vec(b),vec( c) +vec(d)]=[vec(a),vec(b),vec( c)] +[v...

    Text Solution

    |

  19. Find the volume of the parallelopiped whose cotermius edges are 2hat(i...

    Text Solution

    |

  20. Show that the vectors vec(a)=hat(i)-2hat(j)+3hat(k) vec(b)=-2i+3hat(j)...

    Text Solution

    |