Home
Class 12
MATHS
Prove that [vec(a)+vec(b),vec(b)+vec( c)...

Prove that `[vec(a)+vec(b),vec(b)+vec( c) , vec( c) +vec(a)] =2 [vec(a),vec(b),vec(c )]`.

Text Solution

Verified by Experts

`[vec(a) +vec(b),vec(b) +vec ( c) ,vec (c ) +vec(a)]=(vec(a)+vec(b)).{(vec(b)+vec( c))xx(vec ( c) +vec (a))}=(vec(a)+vec(b)).{vec(b)xxvec (c ) +vec(b)xxvec(a)+vec( c) xx vec( c) +vec (c ) xxvec (a) }`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • TRIANGLES

    SUBHASH PUBLICATION|Exercise Exercise 5.7|1 Videos

Similar Questions

Explore conceptually related problems

Prove that [vec(a),vec(b),vec( c) +vec(d)]=[vec(a),vec(b),vec( c)] +[vec(a),vec(b),vec(d)] .

(vec b xx vec c) xx (vec c xx vec a ) =

The value of [vec(a)-vec(b) vec(b)-vec(c) vec(c)-vec(a)] is equal to

If vec(a), vec(b), vec(c ) are unit vectors such that vec(a) + vec(b) + vec(c )= vec(0), " then " vec(a).vec(b) + vec(b).vec(c ) + vec(c ).vec(a) =

Three vectors overline(a),overline(b) and overline(c) satisfy the condition vec(a)+vec(b)+vec(c)=vec(0) evaluate mu=vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) if |vec(a)|=1,|vec(b)|=4 and |vec(c)|=2

If vec(a), vec(b)" and "vec(c) are three unit vectors such that vec(a)+vec(b)+vec(c)=vec(O) , find the value of vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) .

If [vec(a),vec(b),vec(c)] denotes the scalar triple product of the vectors vec(a),vec(b),vec(c) , then [vec(a)+vec(b),vec(b)+vec(c),vec(c)+vec(a)] is equal to

If vec(a) = 2hat(i) - 3hat(j) + 4hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c ) = 3hat(i) + 4hat(j) - hat(k) , then find vec(a).(vec(b) xx vec(c )) and (vec(a) xx vec(b)).vec(c ) . Is, vec(a).(vec(b) xx vec(c )) = (vec(a) xx vec(b)).vec(c ) ?

If vec(a) = 3vec(i) - 2vec(j) + 2vec(i), vec(b) = 6vec(i) + 4vec(j) - 2vec(k), vec(c ) = 3hat(i) - 2hat(j) - 4hat(k) , Then vec(a).(vec(b) xx vec(c )) is

SUBHASH PUBLICATION-VECTOR ALGEBRA -TWO MARKS/THREE MARKS QUESTIONS WITH ANSWERS
  1. Evaluate the product (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  2. Find the magnitude of two vectors vec(a) and vec(b) having the same ma...

    Text Solution

    |

  3. Find |x|, if for a unit vector a, (vec(x)-vec(a)).(vec(x)+vec(a))=12.

    Text Solution

    |

  4. If a=2hat(i)+2hat(j)+3hat(k),b=hat(i)+2hat(j)+hat(k) and c=3hat(i)+hat...

    Text Solution

    |

  5. Show that |a|b+|b| a is perpendicular to |a|b-|b| a for any two non- z...

    Text Solution

    |

  6. If a,b,c are unit vectors such that a+b+c=0, then find the value of a....

    Text Solution

    |

  7. If either a=0,b=0, then a.b=0. But the converse need not to be true . ...

    Text Solution

    |

  8. If the vertices A,B,C of a triangle ABC have position vectors (1,2,3),...

    Text Solution

    |

  9. Show that the points A(1,2,7),B(2,6,3) and C(3,10,-10 are collinear.

    Text Solution

    |

  10. Show that the vectors 2hat(i)-hat(j)+hat(k),hat(i)-3hat(j). And 3hat(i...

    Text Solution

    |

  11. Find |vec(a)xxvec(b)|, if a=hat(i) -7hat(j)+7k and b=3hat(i)-2hat(j)+2...

    Text Solution

    |

  12. Find a unit vector perpendicular to each of the vectors (veca+vecb) an...

    Text Solution

    |

  13. If a unit vector hat(a), makes angles (pi)/(3) with hat(i),(pi)/(4) wi...

    Text Solution

    |

  14. Show that (vec(a)-vec(b))xx(vec(a)+vec(b))=2 (vec(a)xxvec(b)).

    Text Solution

    |

  15. Find lambda and u, if (2hat(i)+6hat(j)+27hat(k))xx(hat(i)+lambdahat(j)...

    Text Solution

    |

  16. Given that a.b=0 and axxb=0. What can you conclude about the vectors a...

    Text Solution

    |

  17. Prove that [vec(a)+vec(b),vec(b)+vec( c) , vec( c) +vec(a)] =2 [vec(a)...

    Text Solution

    |

  18. Prove that [vec(a),vec(b),vec( c) +vec(d)]=[vec(a),vec(b),vec( c)] +[v...

    Text Solution

    |

  19. Find the volume of the parallelopiped whose cotermius edges are 2hat(i...

    Text Solution

    |

  20. Show that the vectors vec(a)=hat(i)-2hat(j)+3hat(k) vec(b)=-2i+3hat(j)...

    Text Solution

    |