Home
Class 11
MATHS
(cos2A)/(secA)+(sin2A)/(cosecA)=cosA...

`(cos2A)/(secA)+(sin2A)/(cosecA)=cosA`

Text Solution

Verified by Experts

The correct Answer is:
`=cos(2A-A)`

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (ii) (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (iv) (1+secA)/(secA)=(sin^(2)A)/(1-cosA)

(sin3A)/(sinA)-(cos3A)/(cosA)=2

(1-cos2A+sin2A)/(1+cos2A+sin2A)=tanA

Statement-1 : (sin(A+B)+sin(A-B))/(cos(A+B)+cos(A-B))=tanA Statement-2 : sin(A+B)+sin(A-B)=sinA and cos(A+B)+cos(A-B)=cosA .

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (v) (cosA-sinA+1)/(cosA+SinA-1)=cosecA+cotA.

(sin^(3)A+sin3A)/(sinA)+(cos^(3)A-cos3A)/(cosA) is equal to

Prove that (cot A - cos A)/(cot A + cos A) = (cosec A -1)/(cosecA+1) .

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (cosec A-sinA)(secA-cosA)= (1)/(tanA+cotA)

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (sinA+cosecA)^(2)+(cosA+secA)^(2)=7+tan^(2)A+cot^(2)A