Home
Class 11
MATHS
Show that: cos^(6)A+sin^(6)A=1-3/4sin^(2...

Show that: `cos^(6)A+sin^(6)A=1-3/4sin^(2)(2A)`

Text Solution

Verified by Experts

The correct Answer is:
RHS

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

Show that cos 2A=cos^(2)A-sin^(2)A

cos^(4)A-sin^(4)A=2cos^(2)A-1

cos^(4)A-sin^(4)A=2cos^(2)A-1

If sin A + sin^(2)A + sin^(3)A =1 , then , prove that cos^(6) A - 4 cos^(4) A + 8 cos^(2) A =4 .

sin^(6)theta+cos^(6)theta=1-3sin^(2)thetacos^(2)theta

sin^(6)theta=cos^(6)theta=1-3sin^(2)thetacos^(2)theta

cos[2 sin^(-1) 3/4 + cos^(-1)3/4]

Evaluate : int(sin^(6)x+cos^(6)x)/(sin^(2)x.cos^(2)x)dx.

Prove that: (sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = (2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2 cos^(2)A) .

Prove that cos^(2)2x-cos^(2)6x=sin4x.sin8x ?