Home
Class 12
MATHS
A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"s...

`A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t),-e^(-t)"cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"`

A

Invertible for all `t in R`

B

Invertible only if `t = pi/2`

C

Not Invertible for all `t in R`

D

Invertible only if `t = pi`

Text Solution

Verified by Experts

The correct Answer is:
A

`A=[(e^(t),e^(-t)cost,e^(-t)sint),(e^(t)-e^(-t),cost-e^(-t)sint-e^(-t),siny+e^(-t)cost),(e^(t),2e^(-t)sint,-2e^(-t)cost)]`
`det(A)=|A|=|(e^(t),e^(-t)cost,e^(-t)sint),(e^(t)-e^(-t),cos-e^(-t)sint,-e^(-t)sint+e^(-t)cost),(e^(t),2e^(-t)sint,-2e^(-t)cost)|`
`=e^(-t)|(1, cost,sint),(1,-cost-sint,-sint+cost),(1, 2sint,-2cost)|=e^(-t)|(1,cost, sint),(0,-2cost-sint,-2sint+cost),(0, 2sint-cost,-2cost-sint)|`
`=e^(-t)((2cost+sint)^(2)+(2sint-cost)^(2))gt 00 AA t.`
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(t)(cost-sin t)dt

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt

Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]] is invertible. (1) only id t=pi/2 (2) only y=pi (3) t in R (4) t !in R

e^(x)"cos x w.r.t."e^(x)sinx

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=

If x=e^(sin 3t) y= e ^(cos , 3t) ,then (dy)/(dx)=