Home
Class 12
MATHS
For any theta epsilon((pi)/4,(pi)/2) the...

For any `theta epsilon((pi)/4,(pi)/2)` the expression `3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4sin^(6)theta` equals:

A

`13-4cos^(2)+6sin^(2) theta cos^(2)theta`

B

`13-4cos^(4) theta+2sin^(2) theta cos^(2) theta`

C

`13-4cos^(6)theta`

D

`13-4cos^(2) theta+6cos^(4) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3(\sin \theta - \cos \theta)^4 + 6(\sin \theta + \cos \theta)^2 + 4\sin^6 \theta\) for \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\), we will break it down step by step. ### Step 1: Simplify \((\sin \theta - \cos \theta)^2\) and \((\sin \theta + \cos \theta)^2\) Using the identity \((a - b)^2 = a^2 - 2ab + b^2\) and \((a + b)^2 = a^2 + 2ab + b^2\): \[ (\sin \theta - \cos \theta)^2 = \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta = 1 - \sin(2\theta) \] \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta = 1 + \sin(2\theta) \] ### Step 2: Substitute into the expression Now we substitute these results back into the original expression: \[ 3(\sin \theta - \cos \theta)^4 = 3(1 - \sin(2\theta))^2 \] \[ 6(\sin \theta + \cos \theta)^2 = 6(1 + \sin(2\theta)) \] ### Step 3: Expand \((1 - \sin(2\theta))^2\) Expanding \(3(1 - \sin(2\theta))^2\): \[ 3(1 - \sin(2\theta))^2 = 3(1 - 2\sin(2\theta) + \sin^2(2\theta)) = 3 - 6\sin(2\theta) + 3\sin^2(2\theta) \] ### Step 4: Combine the terms Now combine all parts of the expression: \[ 3 - 6\sin(2\theta) + 3\sin^2(2\theta) + 6 + 6\sin(2\theta) + 4\sin^6(\theta) \] Notice that \(-6\sin(2\theta)\) and \(6\sin(2\theta)\) cancel each other out: \[ = 9 + 3\sin^2(2\theta) + 4\sin^6(\theta) \] ### Step 5: Use the identity for \(\sin^6(\theta)\) We can express \(\sin^6(\theta)\) in terms of \(\sin^2(\theta)\): \[ \sin^6(\theta) = (\sin^2(\theta))^3 \] Let \(x = \sin^2(\theta)\). Then, \(\sin^2(2\theta) = 4\sin^2(\theta)\cos^2(\theta) = 4x(1-x)\). ### Step 6: Substitute back Substituting back gives: \[ = 9 + 3(4x(1-x)) + 4x^3 \] \[ = 9 + 12x - 12x^2 + 4x^3 \] ### Step 7: Final expression Thus, the final expression simplifies to: \[ = 4x^3 - 12x^2 + 12x + 9 \] ### Conclusion The expression \(3(\sin \theta - \cos \theta)^4 + 6(\sin \theta + \cos \theta)^2 + 4\sin^6 \theta\) simplifies to \(4\sin^6(\theta) - 12\sin^4(\theta) + 12\sin^2(\theta) + 9\).

To solve the expression \(3(\sin \theta - \cos \theta)^4 + 6(\sin \theta + \cos \theta)^2 + 4\sin^6 \theta\) for \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\), we will break it down step by step. ### Step 1: Simplify \((\sin \theta - \cos \theta)^2\) and \((\sin \theta + \cos \theta)^2\) Using the identity \((a - b)^2 = a^2 - 2ab + b^2\) and \((a + b)^2 = a^2 + 2ab + b^2\): \[ (\sin \theta - \cos \theta)^2 = \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta = 1 - \sin(2\theta) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(6)theta)-13=0

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

int(2sin2 theta-cos theta)/(6-cos^(2)theta-4sin theta)d theta

3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(6)theta) is equal to 11(b)12(c)13(d)14

(cos6 theta-cos4 theta)/(sin6 theta+sin4 theta)=-tan theta

If sin theta+ cos theta= (1)/(2) , then 16(sin (2theta)+ cos (4theta) + sin (6theta)) is equal to

cos^(3)2 theta+3cos2 theta=4(cos^(6)theta-sin^(6)theta)

If tan(pi cos theta)=cot(pi sin theta) then sin(theta+(pi)/(4)) equals

The value of 2(sin^6 theta+ cos^6 theta )-3 (sin^4 theta + cos^4 theta) is ……..