Home
Class 12
MATHS
If A = [{:("cos" theta, -"sin"theta),("s...

If `A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}]`, then the matrix `A^(-50) " when " theta = (pi)/(12)`, is equal to

A

`[(1/2, (sqrt(3))/2),(-(sqrt(3))/2,1/2)]`

B

`[((sqrt(3))/2,-1/2),(1/2,(sqrt(3))/2)]`

C

`[(1/2,(sqrt(3))/2),(1/2,1/2)]`

D

`[((sqrt(3))/2,1/2),(-1/2,(sqrt(3))/2)]`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `A (theta)=[(cos theta, -sin theta),(sin theta, cos theta)]`
Then `A(theta0xxA(alpha)=A(alpha+theta)`
Also `A(0)=I`
Hence`[A(theta)]^(-1)=A(-theta` and `[A(theta)]^(n)=A( n theta) AA n epsilon ZimpliesA^(-50)(theta)=A(-50 theta)`
`theta=(pi)/12 impliesA^(-50)((pi)/12)=A(-25(pi)/6)=A((-pi)/6)=[(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(costheta, -sin theta ),(sin theta, cos theta) ] , then the matrix A^(-50) when theta=pi/12 , is equal to :

Inverse of the matrix [{:(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta):}] is

Inverse of the matrix [(cos 2 theta,-sin 2theta),(sin 2 theta, cos 2theta)] is

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

Let theta = (pi)/(5) and A =[{:(cos theta, sin theta),(-sin theta, cos theta):}] . If B = A + A^(4) , then det (B).

Inverse of the matrix A=[[cos2theta, -sin2theta], [sin2theta, cos2theta]] is

If x=(2sin theta)/(1+cos theta+sin theta), then prove that (1-cos theta+sin theta)/(1+sin theta) is equal to x