Home
Class 12
MATHS
Let A={theta in (-pi /2,pi):(3+2i sin th...

Let `A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 sin theta )` is purely imaginary }
Then the sum of the elements in A is

A

`pi`

B

`(3pi)/1`

C

`(2pi)/3`

D

`(5pi)/6`

Text Solution

Verified by Experts

The correct Answer is:
C

`(3+2 isin theta)/(1-2i sin theta)=((3+2isin theta)(1+2isin theta))/(1+4sin^(2)theta)`
`Re((3+2isintheta)/(2-2isin theta))=0implies3=4sin^(2)theta=0impliestheta=+-(pi)/3,(2pi)/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 isin theta ) is purely imaginary } Then the sum of the elements in A is

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta?

Find real theta such that (3+2i sin theta)/(1-2i sin theta) is purely real.

Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) real (b) purely imaginary

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0

Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0} , then the sum of the equations elements of S is .