Home
Class 12
MATHS
Let S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(...

Let `S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(2))/(1-r)=1}`, where `r ne pm 1`. Then S represents:

A

An ellipse whose eccentricity is `(1)/(sqrt(r+1))`, where `r gt 1`

B

A hyperbola whose eccentricity is `(2)/(sqrt(1-r))`, when `0 lt r lt 1`.

C

An ellipse whose eccentricity is `sqrt((2)/(r+1))`, when `r gt 1`

D

A hyperbola whose eccentricity is `(2)/(sqrt(r+1))`, where `0 lt r lt 1`.

Text Solution

Verified by Experts

The correct Answer is:
C

`(y^(2))/(1+r)-(x^(2))/(1-r)=1`
Ellipse : `(x^(2))/(r-1)+(y^(2))/(r+1)=1 " when " r gt 1`
`e= sqrt( 1-(r-1)/(r+1))= sqrt((2)/(r+1))`
Hyperbola : `(x^(2))/(1-r)-(y^(2))/(1+r)=-1 " when " 0 lt r lt 1`
`e=sqrt(1+(1-r)/(1+r))=sqrt((2)/(r+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Equation (x^(2))/(r-2) + (y^(2))/(5-r) = 1 represents an ellipse if

Let A={(x,y):x,y in R,x^(2)+y^(2)=1} and B={(x,0):x in R,-1<=x<=1}, then the elements of A nn B can be

The equation (x^(2))/(1-r)-(y^(2))/(1+r)=1,r>1 represents (a)an ellipse (b) a hyperbola (c)a circle (d) none of these

(x^(2))/(r^(2)-r-6)+(y^(2))/(r^(2)-6r+5)=1 will represent ellipse if r lies in the interval

Let y=(x^(2)+3x+1)/(x^(2)+x+1) then y in R then

The equatio (x ^(2 ))/( 2 -r) + (y ^(2))/(r -5) +1=0 represents an ellipse, if

Let f(x)=(r-2)(r+1)x^(2)+r(r-2)x-r(r-2)=0, where r in I,x in R. If roots of the equation f(x_(i)) are real and sum_(i=1)^(3)(f(x_(i)))^(2)=0, then the value of r is

The equation (y^2)/(1+r)-(x^2)/(1-r)=1 (a) represents a hyperbola of eccentricity equal to (2)/(sqrt(r+1)) if r in(0,1) (b) represents a hyperbola of eccentricity equal to sqrt((1-r)/(1+r) if rin(0,1) (c) represents a ellipse of eccentricity equal to sqrt((2)/(r+1)) if rgt1 (d) represents a ellipse of eccentricity equal to sqrt((r+1)/(2)) if rgt1

(x^(2))/(r^(2)+r-6)+(y^(2))/(r^(2)-6r+5)=1 will represent the ellipse if r lies in the interval

Let R={(x,y):x^(2)+y^(2)=1,x,y in R} be a relation in R. Then the relation R is