Home
Class 12
MATHS
The value of cospi/2^(2).cospi/2^(3)………....

The value of `cospi/2^(2).cospi/2^(3)……….cospi/2^(10).sinpi/2^(10)` is

A

`(1)/(512)`

B

`(1)/(1024)`

C

`(1)/(2)`

D

`(1)/(256)`

Text Solution

Verified by Experts

The correct Answer is:
A

`"cos"(pi)/(2^(2))*"cos"(pi)/(2^(3))........"cos"(pi)/(2^(10))*"sin"(pi)/(2^(10))`
`=............. (2 xx "cos"(pi)/(2^(10))*"sin"(pi)/(2^(10)))/(2)`
`=............. (2 *"cos"(pi)/(2^(9))*"sin"(pi)/(2^(9)))/(2*2 )`|
`=............. ("cos"(pi)/(2^(2))*"sin"(pi)/(2^(2)))/(2^(8))=("sin"(pi)/(2))/(2^(9))=(1)/(512)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos(pi/2^(2)).cos(pi/2^(3))……….cos(pi/2^(10)).sin(pi/2^(10)) is

sinpi/10+sin(13pi)/(10)=?

Write the value of sin^(-1)(cospi/9) .

The value of (sin^(2)(pi)/(10)+sin^(2)(4 pi)/(10)+sin^(2)(6 pi)/(10)+sin^(2)(9 pi)/(10)) is

Find the value of 2/(10/3)

the value of (tan^(2)(10)*sin^(2)(10))/(tan^(2)(10)-sin^(2)(10))

Find the value of 10 div 2/3

The polar form of the complex number (i^(25))^3 is (a) cos(pi/2)+isin(pi/2) (b) cospi+isinpi (c) cospi-isinpi (d) cos((3pi)/2)+isin((3pi)/2)

{(1+cospi//8+isinipi//8)/(1+cospi//8-isinpi//8)}^(8)=