Home
Class 12
MATHS
Let f:RtoR be a function such that f(x)=...

Let `f:RtoR` be a function such that `f(x)=x^(3)+x^(2)f'(1)+xf"(2)+f"(3),xinR`. Then `f(2)` equals:

A

30

B

8

C

2

D

`-4`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=x^(3)+x^(2)f'(1)+xf"(2)+f"'(3)`
f"(3)=6
`f'(x)=3x^(2)+2xf'(1)+f"(2)`
`f'(1)=3+2f'(1)+f"(2)`
`f'(1)+f"(2)+3=0` …(i)
`f"(x)=6x+2f'(1)`
f"(2)=12+2f'(1) …(ii)
Substitute in (i)
`f'(1)+12+2f'(1)+3=0`
`rArrf'(1)=-5f"(2)=2`
`f(x)=x^(3)-5x^(2)+2x+6`
f(2)=2
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : RtoR be a function such that f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3),x in R . Then f(2) equals

Let f :R to R be a function such that f(x) = x^3 + x^2 f' (0) + xf'' (2) , x in R Then f(1) equals:

Let f : R to R be a function such that f(x) = x^(3) + x^(2) f'(1) + xf''(2) + f'''(3), x in R . Then, f(2) equals

Let f:RtoR be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3) for x in R What is f(1) equal to :

Let f:RtoR be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3) for x in R What is f'(1) is equal to ?

Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f''(3) What is f'(1) equal to

Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f''(3) What is f''(1) equal to

Let f:RtoR be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3) for x in R What is f'''(10) equal to ?

Let f:RtoR be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3) for x in R Consider the following 1. f(2)=f(1)-f(0) 2.f''(2)-2f'(1)=12 Which of the above is/are correct ?

Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f''(3) for x in R What is f(1) equal to