Home
Class 12
MATHS
Let I=int(a)^(b)(x^(4)-2x^(2))dx. If I i...

Let `I=int_(a)^(b)(x^(4)-2x^(2))dx`. If I is minimum then the ordered pair (a,b) is `(-sqrtk,sqrtl)`. The value of (k+l) is _________.

Text Solution

Verified by Experts

The correct Answer is:
4

`I=int_(a)^(b)(x^(4)-2x^(2))dx`
Consider `f(x)=x^(4)-2x^(2)=x^(2)(x^(2)-2)`
Obviously `int_(a)^(b)(x^(4)-2x^(2))dx` is least when `a=-sqrt2` and `b=sqrt2`
Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(0)^(2)x sqrt(4-x^(2))dx

I=int_(0)^(4)(x^(2)+2x+4)dx

Let I = int_(1)^(3)sqrt(x^(4)+x^(2)) , dx then

Let I=int_(0)^(1)(x^(3)cos3x)/(2+x^(2))dx, then

If a lt int_(0)^(2pi)) (1)/(10+3 cos x)dx lt b . Then the ordered pair (a,b) is

Let 1=int_(0)^(1)(2+3x+4x^(2))/(2sqrt(1+x+x^(2)))dx. Find the value of I^(2).

Let I = int_(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite real number, then

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then