Home
Class 12
MATHS
All x satisfying the inequnality (cot^...

All x satisfying the inequnality `(cot^(-1) x)^(2) - 7 (cot^(-1) x) + 10 gt0` lie in the inteval

A

`(cot 2 , oo)`

B

`(-oo, cot 5) uu (cot 2, oo)`

C

`(cot 5, cot 4)`

D

`(-oo , cot 5) uu (cot 4, cot 2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(cot ^(-1)x )^(2) -7 (cot ^(-1)x ) + 10 gt 0`
`(cot ^(-1) x -5) (cot ^(-1) x -2) gt 0`
`because cot ^(-1) x-5 lt 0 as cot ^(-1) x in (0,pi) implies cot ^(-1) x-2 lt 0`
`cot ^(-1) x lt 2 therefore x gt cot 2 " "(because cot ^(-1) x is darr)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Solve tan^(-1) x gt cot^(-1) x

Is cot^(-1) (-x) = pi - cot^(-1) x , x in R

Solve for x if (cot^(-1)x)^(2)-3(cot^(-1)x)+2>0

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

The solution set for [cot^(-1)x]^(2)-6[cot^(-1)x]+9<=0 is

Find the domain of cot x+cot^(-1)x

A solution of the equation cot^(-1)2=cot^(-1)x+cot^(-1)(10-x)" where " 1 lt x lt 9 is :