Home
Class 12
MATHS
The integral int(pi//6)^(pi//4)(dx)/(si...

The integral `int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x))` equals

A

`1/5 ((pi)/(4)-tan ^(-) ((1)/(3 sqrt3)))`

B

`1/10 ((pi)/(4)-tan ^(-) ((1)/(9 sqrt3)))`

C

`pi/40`

D

`1/20 tan ^(-1) ((1)/(9 sqrt3))`

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int _(pi//6) ^(pi//4) (dx)/(sin 2x (tan ^(5)x + cot ^(5) x ))= int _(pi//6) ^(pi//4) (sec ^(2)x )/(2 tan x (tan ^(5)x + cot ^(5) x ))dx`
Let `tan x =t`
`= int _(1//sqrt3)^(1) (dt)/((t ^(5) + (1)/(t ^(5))))`
`I =1/2int _(1//sqrt3) (t ^(4))/(((t^(5))^(2) +1))dt`
`I = (1)/(10) int _(1//sqrt3) ^(1) (5t^(4))/((t ^(5))^(2) +1)dt`
Let `t ^(5) = u = (1)/(10) int _(1//9 sqrt3)^(1) (du)/(u ^(2) +1)=1/10 tan ^(-1)u |_(1//9 sqrt3) =1/10 ((pi)/(4) -tan ^(-1) (1)/(9 sqrt3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_((pi)/(6))^((pi)/(4))(dx)/(sin2x*(tan^(5)x+cot^(5)x)) is (A) (pi)/(40)(B)(pi)/(60)(C)(pi)/(120) (D) (pi)/(20)

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Compute the integrals : int_(pi//4)^(pi//3) (x dx)/( sin^(2) x)

The integral int_((pi)/(12))^((pi)/(4))(8cos2x)/((tan x+cot x)^(3))dx equals

int_(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^(5)x)dx is equal to

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(0)^((pi)/(2))(dx)/(5+4sin x)