Home
Class 12
MATHS
Let f(x) = - (x)/(sqrt(a^(2) + x^(2)))- ...

Let `f(x) = - (x)/(sqrt(a^(2) + x^(2)))- (d-x)/(sqrt(b^(2) + (d-x)^(2))), x in R`, where a, b and d are non-zero real constants. Then,

A

is not a continuous function of x

B

f is neither increasing nor decreasing function

C

f is an increasing function of x

D

f is a decreasing function of x

Text Solution

Verified by Experts

The correct Answer is:
C

`f (x) = (x)/( sqrt(a ^(2) + x ^(2)))- ((d -x ))/( sqrt(b ^(2) + (d-x )^(2)))`
`f'(x) (sqrt(a ^(2) + x ^(2)). 1 -x 1/2. (2x )/(sqrt(a ^(2) + x ^(2 ))))/((a ^(2) + x ^(2)))- ([sqrt(b ^(2) + (d-x)^(2)) (-1)+ (d-x). (1)/(2) [2 (d -x) (1))/(sqrt(b ^(2) + (d-x)^(2)))])/((b ^(2) + (d-x )^(2)))`
Upon simplifying
`f '(x) = (a^(2))/((a ^(2) + x ^(2)))+ (b^(2))/((b ^(2) + (d -x )^(3)) 6(3//3))" "therefore f` is increasing
Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate: (x)/(sqrt(a^(2)-x^(2)))

Let f(x) =ax^(2) -b|x| , where a and b are constants. Then at x = 0, f (x) is

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

Let f(x)=ax^(2)-b|x| , where a and b are constant . Then at x=0 , f(x) has

d//dx[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^(1//2)]

If f(x)=(x)/(sqrt(a^(2)+x^(2)))+((d-x))/(sqrt(b^(2)+(d-x)^(2))) ten (A) f(x) is strictly increasing (B) f(x)^(2) strictly deceasing (C) f backslash(x) is constant (D)f(x) is neither increasing nor decreasing

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

Let f(x)="min"{sqrt(4-x^(2)),sqrt(1+x^(2))}AA,x in [-2, 2] then the number of points where f(x) is non - differentiable is