Home
Class 12
MATHS
Let alpha and beta be the roots of the ...

Let `alpha` and `beta` be the roots of the quadratic equation `x sin^(2) theta -x (sin theta cos theta + 1) + cos theta =0 (0le thetale 45^(@)) and alpha le beta` . Then`underset(n =0)overset(oo)sum(alpha^(n)+((-1)^(n))/(beta^(n)))` is to equal to

A

`(1)/(1-cos theta) + ( 1)/(1- sin theta)`

B

`(1)/( 1 + cos theta) - (1)/( 1 - sin theta)`

C

`(1)/(1- cos theta)+ (1)/(1+ sin theta)`

D

`(1)/(1- cos theta) - ( 1)/( 1 + sin theta)`

Text Solution

Verified by Experts

The correct Answer is:
C

`because alpha, beta` be the roots of the equation: `" " x ^(2) sin theta - x sin theta cos theta - x + cos theta = 0`
`implies x sin theta ( x- cos theta) -1 (x -cos theta)=0 implies " "( x sin theta -1) (x - cos theta) =0implies x = (1)/(sin theta), cos theta`
Given that `0 lt theta lt 45^(@) and alpha lt beta" " therefore " " alpha =cos theta beta = (1)/(sin theta)`
Now, `sum _(n =0) ^(oo) (alpha ^(n) + ((-1)^(n))/(beta ^(n))) = sum _(n =0) ^(oo) alpha ^(n) + sum_(n =0) ^(oo) ((-1)^(n))/(beta ^(n))= (1)/(1 - alpha ) + (beta)/(1 + beta) = (1)/(1 - cos theta) +((1)/(sin theta))/(1 + (1)/(sin theta ))= (1)/(1-cos theta) + (1)/(1 +sin theta)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the quadratic equation x sin^(2) theta -x (sin theta cos theta + 1) + cos theta =0 (0le thetale 45^(@)) and alpha le beta . Then sum_(n=0)^(oo) (alpha^(n)+((-1)^(n))/(beta^(n))) is to equal to

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha and beta are the roots of the equation (1)/(2)x^(2)-sin2 theta x+cos2 theta=0, then the value of (1)/(alpha)+(1)/(beta) is:

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to