Home
Class 12
MATHS
underset(x to 0) lim(x cot(4x))/(sin^(2)...

`underset(x to 0) lim(x cot(4x))/(sin^(2) x cot^(2)(2x))` is equal to

A

4

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

`lim _(x to 0) (x cot 4x )/(sin ^(2) cot ^(2) 2x )= lim _(x to 0) ( x cos 4x xx sin ^(2) 2x )/(sin ^(2) x. sin 4x. cos ^(2) 2x )`
`=lim _(x to 0) ( x cos 4x xx sin ^(2) 2x )/(sin ^(2) x.2 sin 2x cos 2x. cos ^(2) 2x )= lim _(x to 0) (x cos 4 x xx cos x )/(sin x xx cos ^(3) x ) =1`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0)(x cot(4x))/(sin^(2) x cot^(2)(2x)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

underset(x to 0)lim (e^(x^(2))-cos x)/(sin^(2) x) is equal to :

lim_(x rarr0)sin^(-1)sin cot^(-1)((1)/(x)) is equal to -

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

The value of {:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x)) is equal to

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to