Home
Class 12
CHEMISTRY
Heat treatment of muscular pain involves...

Heat treatment of muscular pain involves radiation of wavelength of about 900nm. Which spectral line of H-atom is suitable for this purpose? `[R_H=1xx10^5 cm^(-1), h=6.6xx10^(-34) Js, c=3xx10^8 ms^(-1) ]`

A

Paschen , `oo to 3`

B

Lyman , `oo to 1`

C

Paschen , `5 to 3`

D

Balmer , `oo to 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of identifying which spectral line of the hydrogen atom corresponds to a radiation wavelength of about 900 nm, we will use the Rydberg formula for hydrogen spectral lines. The steps are as follows: ### Step 1: Understand the Rydberg Formula The Rydberg formula is given by: \[ \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] Where: - \(\lambda\) is the wavelength of the emitted or absorbed radiation. - \(R_H\) is the Rydberg constant for hydrogen, given as \(1 \times 10^5 \, \text{cm}^{-1}\). - \(n_1\) is the principal quantum number of the lower energy level. - \(n_2\) is the principal quantum number of the higher energy level. ### Step 2: Convert Wavelength to Centimeters Given that the wavelength \(\lambda\) is 900 nm, we need to convert this to centimeters: \[ 900 \, \text{nm} = 900 \times 10^{-9} \, \text{m} = 900 \times 10^{-7} \, \text{cm} \] ### Step 3: Substitute Values into the Rydberg Formula We will assume that the electron transitions from a very high energy level (approaching infinity) to a lower energy level \(n_1\). Thus, we can set \(n_2 = \infty\) (which means \(\frac{1}{n_2^2} = 0\)). Substituting into the Rydberg formula gives: \[ \frac{1}{900 \times 10^{-7}} = 1 \times 10^5 \left( \frac{1}{n_1^2} - 0 \right) \] ### Step 4: Solve for \(n_1\) Rearranging the equation gives: \[ \frac{1}{n_1^2} = \frac{1}{900 \times 10^{-7}} \times 1 \times 10^5 \] Calculating the left-hand side: \[ \frac{1}{n_1^2} = \frac{1 \times 10^5}{900 \times 10^{-7}} = \frac{1 \times 10^{12}}{900} \] Calculating this value: \[ \frac{1 \times 10^{12}}{900} \approx 1.111 \times 10^{9} \] Thus, \[ n_1^2 = \frac{900}{1 \times 10^{12}} \approx 9 \] Taking the square root gives: \[ n_1 = 3 \] ### Step 5: Identify the Series Since \(n_1 = 3\), we can identify the series. The series corresponding to \(n_1 = 3\) is the **Paschen series**, which involves transitions to the \(n=3\) level. ### Conclusion The suitable spectral line of the hydrogen atom for the heat treatment of muscular pain, which involves radiation of wavelength about 900 nm, corresponds to the Paschen series, specifically the transition from \(n_2 = \infty\) to \(n_1 = 3\). ---

To solve the problem of identifying which spectral line of the hydrogen atom corresponds to a radiation wavelength of about 900 nm, we will use the Rydberg formula for hydrogen spectral lines. The steps are as follows: ### Step 1: Understand the Rydberg Formula The Rydberg formula is given by: \[ \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Heat treatment of muscular pain involves rediation of wavelenght of about 900 nm.Which spectral line of H-atom is suitable for this purpose ? [R_H=1xx 10^5 cm^-1,h = 6.6 xx 10 ^- 34 Js , c=3 xx 10 ^8 ms^-1]

What is the wavelength of light . Given energy =3.03xx10^(-19)J, h=6.6xx10^(-34)JS, c=3.0xx10^(8)m//s ?

A 600 W mercury lamp emits monochromatic radiation of wavelength 331.3 nm. How many photons are emitted from the lamp per second? (h =6.626 xx10^(-34)" Js, velocity of light "=3xx10^(8)ms^(-1))

A 600 W mercury lamp emits monochromatic radiation of wave length 313.3 nm. How many photons are emitted from the lamp per second ? ( h = 6.626 xx 10^(-34) Js , velocity of light = 3xx 10^(8) ms^(-1) )

An X - ray tube produces a continuous spectrum of radiation with its shortest wavelength of 45xx10^(-2)Å . The maximum energy of a photon in the radiation in eV is (h = 6.62xx10^(-34)Js, c=3xx10^(8)ms^(-1))

The photosensitive surface is receiving the light of wavelength 5000Å at the rate of 10^(-8)"J s"^(-1) . The number of photons received per second is (h=6.62xx10^(-34)Js, c=3xx10^(8)ms^(-1))

Recommended Questions
  1. Heat treatment of muscular pain involves radiation of wavelength of ab...

    Text Solution

    |

  2. Heat treatment of muscular pain involves rediation of wavelenght of ab...

    Text Solution

    |

  3. 300 वाट तथा 6600 Å तरंगदैर्ध्य के एकवर्णीय प्रकाश स्त्रोत से प्रति स...

    Text Solution

    |

  4. एक एक्स-किरण नली पर कितना विभव लगाया जाए कि एक्स किरणों का तरंगदैर्घ्य...

    Text Solution

    |

  5. 600Å तरंगदैर्घ्य वाले फोटॉन कि ऊर्जा निकाले। (h=6.625xx10^(-34)Js, c=3...

    Text Solution

    |

  6. किसी धातु का कार्य-फलन 2.47 eV है। 400nm तरंगदैर्घ्य वाले प्रकाश से उत...

    Text Solution

    |

  7. सोडियम धातु के लिए थ्रेशोल्ड तरंगदैर्घ्य 680nm है। इसके लिए कार्य-फलन ...

    Text Solution

    |

  8. किसी धातु की सतह के लिए कार्य-फलन 2.2 eV है। इस सतह से इलेक्ट्रॉन को म...

    Text Solution

    |

  9. 242 mm तरंग-दैर्ध्य वाली विद्युत चुंबकीय विकिरण सोडियम परमाणु के आयनीक...

    Text Solution

    |