Home
Class 12
MATHS
underset(xto 1^-)lim(sqrtpi-sqrt(2sin^-1...

`underset(xto 1^-)lim(sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x))` is equal to

A

`sqrt(pi)`

B

`sqrt((2)/(pi))`

C

`(1)/(sqrt(2pi))`

D

`sqrt((pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

`lim_(x rarr 1^(-))(sqrt(pi)-sqrt(2sin^(-1)x))/(sqrt(1-x)) = lim_(x rarr 1^(-))(pi - 2 sin^(-1)x)/(sqrt(1-x)(sqrt(pi)+sqrt(2 sin^(-1)x))) = lim_(x rarr 1^(-))(1)/(2sqrt(pi)) xx (pi - 2 sin^(-1)x)/(sqrt(1-x))`
Put `x = sin theta` then `theta rarr (pi^(-))/(2)` as `x rarr 1^(-)`
`= lim_(theta rarr (pi^(-))/(2))(1)/(2sqrt(pi)) xx (pi - 2 sin^(-1)(sin theta))/(sqrt(1- sin theta)) = lim_(theta-(pi^(-))/(2))(1)/(2sqrt(pi)) xx (pi - 2 theta)/(sqrt(1-sin theta))`
`theta = (pi)/(2) - h, h rarr 0 = lim_(h rarr 0)(1)/(2sqrt(pi)) xx (pi - 2((pi)/(2)-h))/(sqrt(1-cos h)) = (1)/(2sqrt(pi)) xx (2h)/(sqrt(2)sin.(h)/(2)) = sqrt((2)/(pi))`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(x to 1-) (sqrtpi-sqrt(2 sin^(-1) x))/sqrt(1-x) is equal to

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

lim_(x rarr(-1)^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(x+1)) is equal to

underset(x to 1)lim (sqrt(1-cos 2(x-1)))/(x-1)

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x) is equal to

lim_(xto0)(sin2x)/(1-sqrt(1-x))