Home
Class 12
MATHS
lim(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^...

`lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n))` is equal to :

A

`(pi)/(2)`

B

`tan^(-1)(3)`

C

`tan^(-1)(2)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we start with the expression given: \[ \lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \ldots + \frac{n}{5n} \right) \] ### Step 1: Rewrite the last term The last term can be rewritten as follows: \[ \frac{1}{5n} = \frac{n}{5n^2} \] This allows us to express the last term in a form that matches the others. ### Step 2: Generalize the expression Now, we can express the entire sum as: \[ \sum_{r=1}^{5} \frac{n}{n^2 + r^2} \] ### Step 3: Factor out \(n^2\) We can factor \(n^2\) out of the denominator: \[ \frac{n}{n^2 + r^2} = \frac{n}{n^2(1 + \frac{r^2}{n^2})} = \frac{1}{n(1 + \frac{r^2}{n^2})} \] ### Step 4: Rewrite the limit Now, substituting this back into the limit, we have: \[ \lim_{n \to \infty} \sum_{r=1}^{5} \frac{1}{n(1 + \frac{r^2}{n^2})} \] ### Step 5: Recognize the sum as a Riemann sum As \(n\) approaches infinity, \(\frac{r}{n}\) approaches \(x\) where \(x\) ranges from \(0\) to \(5\). The expression can be interpreted as a Riemann sum for the integral of \(\frac{1}{1+x^2}\) from \(0\) to \(5\). ### Step 6: Convert to integral Thus, we can write: \[ \lim_{n \to \infty} \sum_{r=1}^{5} \frac{1}{n(1 + \left(\frac{r}{n}\right)^2)} \approx \int_{0}^{5} \frac{1}{1+x^2} \, dx \] ### Step 7: Calculate the integral The integral of \(\frac{1}{1+x^2}\) is \(\tan^{-1}(x)\): \[ \int_{0}^{5} \frac{1}{1+x^2} \, dx = \tan^{-1}(5) - \tan^{-1}(0) = \tan^{-1}(5) - 0 = \tan^{-1}(5) \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \ldots + \frac{n}{5n} \right) = \tan^{-1}(5) \]

To solve the limit problem step by step, we start with the expression given: \[ \lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \ldots + \frac{n}{5n} \right) \] ### Step 1: Rewrite the last term The last term can be rewritten as follows: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))