Home
Class 12
MATHS
If sin^(4) alpha + 4 cos^(4) beta + 2 = ...

If `sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi]`, then `cos (alpha + beta) - cos (alpha - beta)` is equal to `-sqrt(k)`. The value of k is _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sin^4 \alpha + 4 \cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate the terms on one side: \[ \sin^4 \alpha + 4 \cos^4 \beta + 2 - 4\sqrt{2} \sin \alpha \cos \beta = 0 \] ### Step 2: Applying AM-GM Inequality We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the terms \(\sin^4 \alpha\), \(4 \cos^4 \beta\), and \(2\). According to AM-GM, we have: \[ \frac{\sin^4 \alpha + 4 \cos^4 \beta + 2}{3} \geq \sqrt[3]{\sin^4 \alpha \cdot (4 \cos^4 \beta) \cdot 2} \] ### Step 3: Finding Minimum Values To find the minimum values, we set: \[ \sin^4 \alpha = x, \quad \cos^4 \beta = y \] Then, we can rewrite the equation as: \[ x + 4y + 2 = 4\sqrt{2} \sqrt[4]{xy} \] ### Step 4: Setting Equal Values From AM-GM, equality holds when all terms are equal: \[ \sin^4 \alpha = 4 \cos^4 \beta = 1 \] This implies: \[ \sin^4 \alpha = 1 \quad \Rightarrow \quad \sin \alpha = 1 \quad \Rightarrow \quad \alpha = \frac{\pi}{2} \] And for \(\cos^4 \beta\): \[ 4 \cos^4 \beta = 1 \quad \Rightarrow \quad \cos^4 \beta = \frac{1}{4} \quad \Rightarrow \quad \cos \beta = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad \beta = \frac{\pi}{4} \] ### Step 5: Finding \( \cos(\alpha + \beta) - \cos(\alpha - \beta) \) Now we need to calculate: \[ \cos(\alpha + \beta) - \cos(\alpha - \beta) \] Substituting the values of \(\alpha\) and \(\beta\): \[ \cos\left(\frac{\pi}{2} + \frac{\pi}{4}\right) - \cos\left(\frac{\pi}{2} - \frac{\pi}{4}\right) \] Calculating each term: \[ \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, we have: \[ -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2} \] ### Step 6: Relating to the Given Expression According to the problem, we have: \[ \cos(\alpha + \beta) - \cos(\alpha - \beta) = -\sqrt{k} \] From our calculation, we have: \[ -\sqrt{2} = -\sqrt{k} \] ### Step 7: Solving for \(k\) Thus, we find: \[ k = 2 \] ### Final Answer The value of \(k\) is: \[ \boxed{2} \]

To solve the problem, we start with the equation given: \[ \sin^4 \alpha + 4 \cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate the terms on one side: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

Ifsin^(4)alpha+cos^(4)beta+2=4sin alpha cos beta,0<=alpha,beta<=(pi)/(2) then find the value of (sin alpha+cos beta)

If cos alpha+cos beta=0=sin alpha+sin beta. Prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=