Home
Class 12
MATHS
for x > 1 if (2x)^(2y)=4e^(2x-2y) then (...

for `x > 1` if `(2x)^(2y)=4e^(2x-2y)` then `(1+log_e 2x)^2 (dy)/(dx)`

A

`(x log_e 2x+log_e 2)/(x)`

B

`log_e 2x`

C

`(xlog_e 2x-log_e 2)/(x)`

D

`x log_e 2x`.

Text Solution

Verified by Experts

The correct Answer is:
C

`(2x)^(2y)=4e^(2x-2y)`
Taking log both sides `yl n(2n)=2 ln 2+2(x-y)`.
`rArr y=(ln 2+x)/(1+ln2x)`. `(dy)/(dx)=((1+ln2x)(1)-(ln2+x)(1)/(x))/((1+ln2x)^2)`
So, `(1+ln2x)^2 (dy)/(dx)=(xln(2n)-ln2)/(x)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(2x) +e^(2y) =e^(2( x+y)),then (dy)/(dx)=

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If y=e^(x) log (sin 2x), find (dy)/(dx) .

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y = e^(x+2log x ),then (dy)/(dx)=

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(2) = e^(x-y) , then (dy)/(dx) at x = 1 is ……..

If y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/(dx)=

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))