Home
Class 12
MATHS
int cos (loge xx)dx is equal to...

`int cos (log_e xx)dx` is equal to

A

`x[cos (log_e x)+sin(log_e x)]+C`

B

`(x)/(2)[cos(log_e x)+sin(log_e x)]+C`

C

`x[cos(log_e x)-sin(log_e x)]+C`

D

`(x)/(2) [sin (log_e x)-cos (log_e x)]+C`.

Text Solution

Verified by Experts

The correct Answer is:
B

`I=x cos (log_e x)+int sin (log_e)(1)/(x).x.dx+C`.
`I= x cos (log_e x)+[ x sin log_e x -int cos (log_e x)((1)/(x)).x dx]`
`I=x cos (log_e x)+x sin (log_(e) x)-I+C`.
`I=(x)/(2) (cos (log_e x)+sin(log_e x)+C`.
Promotional Banner

Similar Questions

Explore conceptually related problems

int cos (log_e x)dx is equal to

int cos(log x)dx is equal to

int cos(log x)dx

int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

int sin(log_(e)x)dx

int(1)/(x)(log_(ex)e)dx is equal to

int e^(cot x)(cos x-cos ecx)dx is equal to :

int e^(a log_(e)x)dx