Home
Class 12
MATHS
Considering only the principal values of...

Considering only the principal values of inverse functions, the set `A={x ge 0 :tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)}`

A

Is an empty set

B

Contains two elements

C

Contains more than two elements

D

Is a singleton

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \) for \( x \geq 0 \), we can use the property of the inverse tangent function. ### Step-by-Step Solution: 1. **Use the Identity for Inverse Tangent:** We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] for \( ab < 1 \). Here, let \( a = 2x \) and \( b = 3x \). 2. **Apply the Identity:** Substitute \( a \) and \( b \) into the identity: \[ \tan^{-1}(2x) + \tan^{-1}(3x) = \tan^{-1}\left(\frac{2x + 3x}{1 - (2x)(3x)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \] 3. **Set the Equation:** Now, we can set the equation: \[ \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) = \frac{\pi}{4} \] 4. **Use the Property of Tangent:** Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we equate: \[ \frac{5x}{1 - 6x^2} = 1 \] 5. **Cross-Multiply:** Cross-multiplying gives: \[ 5x = 1 - 6x^2 \] 6. **Rearrange the Equation:** Rearranging the equation leads to: \[ 6x^2 + 5x - 1 = 0 \] 7. **Use the Quadratic Formula:** We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 6, b = 5, c = -1 \). Therefore: \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 6 \cdot (-1)}}{2 \cdot 6} \] \[ x = \frac{-5 \pm \sqrt{25 + 24}}{12} \] \[ x = \frac{-5 \pm \sqrt{49}}{12} \] \[ x = \frac{-5 \pm 7}{12} \] 8. **Calculate the Roots:** This gives us two potential solutions: \[ x = \frac{2}{12} = \frac{1}{6} \quad \text{and} \quad x = \frac{-12}{12} = -1 \] 9. **Consider the Domain:** Since we are considering \( x \geq 0 \), we discard \( x = -1 \). Thus, the only valid solution is: \[ x = \frac{1}{6} \] 10. **Conclusion:** Therefore, the set \( A \) is: \[ A = \left\{ \frac{1}{6} \right\} \] which is a singleton set.

To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \) for \( x \geq 0 \), we can use the property of the inverse tangent function. ### Step-by-Step Solution: 1. **Use the Identity for Inverse Tangent:** We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solve :tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

Solve tan^(-1)2x + tan^(-1)3x = pi/4

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)