Home
Class 12
MATHS
If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-...

If `2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2)`

A

`2x-pi/3`

B

`pi/6-x`

C

`x-pi/6`

D

`pi/3-x`

Text Solution

Verified by Experts

The correct Answer is:
C

`2y=(cot^(-1)((cos.((pi)/(6)-x))/(cos.((pi)/(3)+x))))^2`
`2y=(cot^(-1)((cos.((pi)/(6)-x))/(sin.((pi)/(6)-x))))^2`
`2y=(cos^-1(cot(pi/6-x)))^2`
`2y=(pi/6-x)^2," "2y'=-2(pi/6-x)," " y'=x-pi/6`
Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((cosx-sinx)/(cosx+sinx))

sqrt(3)cosx+sinx=1

(cosx-sinx)/(sqrt(8-sin2x))

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

cos^(-1)((3cosx-2sinx)/(sqrt(13)))

Solve: sinx-cosx=-sqrt2

int((2cosx-3sinx)/(3cosx+2sinx))dx

sinx+cosx=sqrt2.sin(....)

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :