Home
Class 12
MATHS
If f(x)="log"e((1-x)/(1+x)),|X|lt1, then...

If `f(x)="log"e((1-x)/(1+x)),|X|lt1`, then
`f(2x)/(1+x^(2))` is equal to:

Text Solution

Verified by Experts

The correct Answer is:
B

`f((2x)/(1+x^2))=ln((1-(2x)/(1+x^2))/(1+(2x)/(1+x^2)))`
`ln.(((x-1)^2)/((x+1)^2))=2ln|(x-1)/(x+1)|`
`=2ln((1-x)/(1+x))=2f(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x)=log_(e)((1-x)/(1+x)),|x|<1, then f((2x)/(1+x^(2))) is equal to:

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) , "then f "((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) and then f((2x)/(1+x^(2))) is equal to {f(x)}^(2) (b) {f(x)}^(3)(c)2f(x)(d)3f(x)

If f(x)=log((1-x)/(1+x)) ,|x|<1" and f((2x)/(1+x^(2)))=K .f(x) then 50K=

If f(x)=log((1+x)/(1-x)) show that f((2x)/(1+x^(2)))=2(f(x))