Home
Class 12
MATHS
The domain of the definition of the func...

The domain of the definition of the function
`f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x)` is

A

`(1,2) uu (2, oo)`

B

`(-2, -1) uu (-1, 0) uu (2, oo)`

C

`(-1, o) uu (1,2) uu (3, oo)`

D

`(-1, 0) uu (1,2) uu (2, oo)`

Text Solution

Verified by Experts

The correct Answer is:
D

`x^(2 != 4` & `x^(3 - x gt 0`
`x != 2, -2`
`x. (x - 1) (x + 1) gt 0`
`x in (-1, 0) uu (1, oo)`
Using (i) & (ii) `x in (-1, 0) uu (1,2) uu (2, oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of definition of the function f(x)=(9)/(9-x^(2)) +log_(10) (x^(3)-x) , is

Domain of definition of the functioni f(x)=3/(4-x^(2))+log_(10)(x^(3)-x) , is:

Find the domain of the function : f(x)=(3)/(4-x^(2))+log_(10)(x^(3)-x)

" The domain of the function "f(x)=(3)/(4-x^(2))+log_(10)(x^(3)-x)" is "

The domain of the definition of the function f(x)=sin^(-1)((|x|-5)/(2))+[log_(10)(6-x)]^(-1) is

The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-log_(10)(4-x) , is

The domain of definition of the function f(x)=sqrt(1+log_(6)(1-x)) is

The domain of definition of the function f(X)=x^((1)/(log_(10)x)) , is

The domain of definition of the function f(x)=sqrt(1+log_(0)(1-x)) is :