Home
Class 12
MATHS
If the line y = mx + 7 sqrt(3) is norm...

If the line ` y = mx + 7 sqrt(3)` is normal to the hyperbola `(x^(2))/(24)-(y^(2))/(18)=1`, then a value of m is :

A

`(2)/(sqrt(5))`

B

`(sqrt(5))/(2)`

C

`(sqrt(15))/(2)`

D

`(3)/(sqrt(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( m \) such that the line \( y = mx + 7\sqrt{3} \) is normal to the hyperbola \( \frac{x^2}{24} - \frac{y^2}{18} = 1 \), we can follow these steps: ### Step 1: Identify parameters of the hyperbola The given hyperbola is in the standard form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). Here, we have: - \( a^2 = 24 \) → \( a = \sqrt{24} = 2\sqrt{6} \) - \( b^2 = 18 \) → \( b = \sqrt{18} = 3\sqrt{2} \) ### Step 2: Write the normal equation for the hyperbola The equation of the normal to the hyperbola at a point \( (x_0, y_0) \) is given by: \[ y - y_0 = -\frac{b^2}{a^2} \cdot \frac{x - x_0}{y_0} \] However, we can also use the formula for the normal line: \[ y = mx + \left( \pm m \frac{a^2 + b^2}{\sqrt{a^2 - b^2}} \right) \] Here, \( c = \pm m \frac{a^2 + b^2}{\sqrt{a^2 - b^2}} \). ### Step 3: Calculate \( a^2 + b^2 \) and \( a^2 - b^2 \) Calculate \( a^2 + b^2 \): \[ a^2 + b^2 = 24 + 18 = 42 \] Calculate \( a^2 - b^2 \): \[ a^2 - b^2 = 24 - 18 = 6 \] ### Step 4: Substitute into the normal equation The normal line can be written as: \[ y = mx + \left( \pm m \frac{42}{\sqrt{6}} \right) \] We know that the line is given as \( y = mx + 7\sqrt{3} \). Therefore, we can equate: \[ \pm m \frac{42}{\sqrt{6}} = 7\sqrt{3} \] ### Step 5: Solve for \( m \) Taking the positive case: \[ m \frac{42}{\sqrt{6}} = 7\sqrt{3} \] Rearranging gives: \[ m = \frac{7\sqrt{3} \cdot \sqrt{6}}{42} \] Simplifying: \[ m = \frac{7 \cdot \sqrt{18}}{42} = \frac{7 \cdot 3\sqrt{2}}{42} = \frac{21\sqrt{2}}{42} = \frac{\sqrt{2}}{2} \] Taking the negative case: \[ -m \frac{42}{\sqrt{6}} = 7\sqrt{3} \] This leads to: \[ m = -\frac{7\sqrt{3} \cdot \sqrt{6}}{42} = -\frac{\sqrt{2}}{2} \] ### Final Answer Thus, the possible values of \( m \) are: \[ m = \frac{\sqrt{2}}{2} \quad \text{or} \quad m = -\frac{\sqrt{2}}{2} \]

To find the value of \( m \) such that the line \( y = mx + 7\sqrt{3} \) is normal to the hyperbola \( \frac{x^2}{24} - \frac{y^2}{18} = 1 \), we can follow these steps: ### Step 1: Identify parameters of the hyperbola The given hyperbola is in the standard form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). Here, we have: - \( a^2 = 24 \) → \( a = \sqrt{24} = 2\sqrt{6} \) - \( b^2 = 18 \) → \( b = \sqrt{18} = 3\sqrt{2} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If m_(1) and m_(2) are two values of m for which the line y = mx+ 2sqrt(5) is a tangent to the hyperbola (x^(2))/(4)-(y^(2))/(16)=1 then the value of |m_(1)+(1)/(m_(2))| is equal to

The line 9sqrt(3x)+12y=234 sqrt(3) is a normal to the hyperbola (x^(2))/(81)-(y^(2))/(36)=1 at the points

if y=mx+7sqrt(3) is normal to (x^(2))/(18)-(y^(2))/(24)=1 then the value of m can be

If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the hyperbola (x^(2))/(16)-(y^(2))/(3) =1 at the point (4 sec theta, sqrt(3) tan theta) then theta is

Prove that the line y = x - 1 cannot be a normal of the hyperbola x^(2) - y^(2) = 1 .

If the line y = mx + sqrt(a^(2)m^(2) - b^(2)) touches the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 at the point (a sec theta, b tan theta) , then find theta .

The line y=mx+c is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if c

The coordinates of the point at which the line 3x+4y=7 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, are

Find the value of m for which y=mx+6 is tangent to the hyperbola (x^(2))/(100)-(y^(2))/(49)=1