Home
Class 12
MATHS
If the function f defined on (pi/6,pi/3)...

If the function f defined on `(pi/6,pi/3)` by `{{:((sqrt2 cos x -1)/(cot x -1)" , " x ne pi/4),(" is continuous,"),(" k , "x=pi/4 ):}`
then k is equal to

A

`(1)/(sqrt(2))`

B

1

C

2

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
D

`k=underset(x rarr pi/4)lim (sqrt(2)cos x-1)/(cot x-1)= underset(x rarr pi/4) lim (1-sqrt(2) cos x)/(cosec^(2)x)= underset(x rarr pi/4)lim sqrt(2) sin^(3)x=sqrt(2)xx(1/sqrt(2))^(3)=1/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)={((sqrt(2+cosx)-1)/(pi-x)^2 ,; x != pi), (k, ; x = pi):} is continuous at x = 1, then k equals:

If f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(a" "",",,x = (pi)/(4)):} is continuous at x = (pi)/(4) , then a =

Examine the function, f(x) = {{:((cos x)/(pi//2 -x)",",x ne pi//2),(1",",x = pi//2):} for continuity at x = pi//2

Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):}, at =pi .

If f(x) = (1- cos 7(x-pi))/(x-pi), (x ne pi) is continuous at x =pi , then f(pi) equals-

If f (x) is continuous at x=pi, where f(x) =(sqrt(2+cos x)-1)/((pi-2)^(2)), "for" x ne pi, find f(pi).

If f(x) = {{:((k cos x)/(pi - 2x), x ne pi//2),(1, x = pi//2):} , is a continous function at x = pi//2 , then the value of k is-