Home
Class 12
MATHS
Let sum(k=1)^(10)f(a+k)=16(2^(10)-1), w...

Let `sum_(k=1)^(10)f(a+k)=16(2^(10)-1),` where the function f satisfies `f(x+y)=f(x)f(y)` for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

A

16

B

3

C

4

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x+y)=f(x)*f(y) rArr f(x)=a^(x)`
`f(1)=2 rArr f(x)=2^(x)`
`underset(k=1)overset(10)sum f(a+k)=2^(a)[2+2^(2)+...+2^(10)]=(2^(a+1)(z^(10)-1))/(2-1)`
Also, `2^(a+1)(2^(10)-1)=16(2^(10)-1)`
`rArr a+1=4 rArr a=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

The natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)*f(y) for all natural numbers x,y and further f(1)=2 is

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x,y and,further,f(1)=2.

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

The natural number a for which sum_(k=1)^(n)f(a+k)=2n(33+n) where the function f satisfies the relation f(x+y)=f(x)+f(y) for all the natural numbers x,y and further f(1)=4 is

The natural number a for which sum_(k=1,n) f(a+k)=16(2^n-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x,y and further f(1)=2 is:- A) 2 B) 3 C) 1 D) none of these

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a function satisfying f(x+y)=f(x)+f(y) for all x,y in R. If f(1)=k then f(n),n in N is equal to

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is