Home
Class 12
MATHS
Let S = { theta in [-2pi,2pi]:2 cos^(2)...

Let `S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}`, then the sum of the equations elements of S is .

Text Solution

Verified by Experts

The correct Answer is:
2

`2 cos^(2) theta+3 sin theta=0 rArr 2-2sin^(2)theta+3 sin theta=0`
`rarr 2 sin^(2) theta+3 sin theta- 2 =0 rArr 2 sin^(2)theta-4 sin^(2) theta+sin theta-2=0`
`(2sin theta + 1) ( sin theta-2) = 0`
`rArr sin theta= -1//2 rArr theta= (7pi)/(6), (11 pi)/(6), (-5pi)/(6), (-pi)/(6) rArr (7pi+11 pi - 5 pi - pi)/(6) = (12pi)/(6)=2pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S={theta in[-2 pi,2 pi]:2cos^(2)theta+3sin theta=0} ,then the sum of elements of S is approximately equal to

let theta in[-2 pi,2 pi] and 2cos^(2)theta+3sin theta=0 then sum of all solution is

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 isin theta ) is purely imaginary } Then the sum of the elements in A is

Find theta in [pi/2, 3pi/2] satisfying 2cos^(2)theta +sin theta le 2 .

If 0

int _(0) ^(pi) sin ^(2) theta cos theta d theta

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to