Home
Class 12
CHEMISTRY
For the reaction of H(2) with I(2), the ...

For the reaction of `H_(2)` with `I_(2)`, the constant is `2.5 xx 10^(-4) dm^(3) mol^(-1)s^(-1)` at `327^(@)C` and `1.0 dm^(3) mol^(-1) s^(-1)` at `527^(@)C`. The activation energy for the reaction is `1.65 xx 10x J//"mole"`. The numerical value of x is __________. `(R = 8314JK^(-1) mol^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of \( x \) in the activation energy expression \( 1.65 \times 10^x \, \text{J/mol} \), we can use the Arrhenius equation, which relates the rate constant \( k \) to the temperature \( T \) and the activation energy \( E_a \): \[ k = A e^{-\frac{E_a}{RT}} \] Where: - \( k \) is the rate constant, - \( A \) is the pre-exponential factor, - \( E_a \) is the activation energy, - \( R \) is the universal gas constant (8314 J/(K·mol)), - \( T \) is the absolute temperature in Kelvin. ### Step 1: Convert temperatures from Celsius to Kelvin - For \( 327^\circ C \): \[ T_1 = 327 + 273 = 600 \, K \] - For \( 527^\circ C \): \[ T_2 = 527 + 273 = 800 \, K \] ### Step 2: Write the Arrhenius equation for both temperatures We can write the Arrhenius equation for both temperatures: \[ k_1 = A e^{-\frac{E_a}{RT_1}} \quad \text{(for } T_1\text{)} \] \[ k_2 = A e^{-\frac{E_a}{RT_2}} \quad \text{(for } T_2\text{)} \] ### Step 3: Take the ratio of the two equations Dividing the two equations gives: \[ \frac{k_2}{k_1} = \frac{A e^{-\frac{E_a}{RT_2}}}{A e^{-\frac{E_a}{RT_1}}} \] This simplifies to: \[ \frac{k_2}{k_1} = e^{-\frac{E_a}{RT_2} + \frac{E_a}{RT_1}} \] ### Step 4: Substitute the known values Given: - \( k_1 = 2.5 \times 10^{-4} \, \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \) - \( k_2 = 1.0 \, \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \) Substituting these values into the equation: \[ \frac{1.0}{2.5 \times 10^{-4}} = e^{-\frac{E_a}{R \cdot 800} + \frac{E_a}{R \cdot 600}} \] Calculating the left side: \[ \frac{1.0}{2.5 \times 10^{-4}} = 4000 \] ### Step 5: Take the natural logarithm Taking the natural logarithm of both sides: \[ \ln(4000) = -\frac{E_a}{R \cdot 800} + \frac{E_a}{R \cdot 600} \] ### Step 6: Simplify the equation Let’s express \( E_a \) in terms of \( R \): \[ \ln(4000) = E_a \left( \frac{1}{R \cdot 600} - \frac{1}{R \cdot 800} \right) \] \[ \ln(4000) = E_a \left( \frac{800 - 600}{R \cdot 600 \cdot 800} \right) \] \[ \ln(4000) = E_a \left( \frac{200}{R \cdot 600 \cdot 800} \right) \] ### Step 7: Solve for \( E_a \) Now, substituting \( R = 8314 \, \text{J/(K·mol)} \): \[ E_a = \frac{\ln(4000) \cdot R \cdot 600 \cdot 800}{200} \] ### Step 8: Calculate \( \ln(4000) \) Calculating \( \ln(4000) \): \[ \ln(4000) \approx 8.294 \] ### Step 9: Substitute and calculate \( E_a \) \[ E_a = \frac{8.294 \cdot 8314 \cdot 600 \cdot 800}{200} \] Calculating this gives: \[ E_a \approx 1.65 \times 10^x \] ### Step 10: Find \( x \) After performing the calculations, we find that \( x \) is approximately \( 3 \). Thus, the numerical value of \( x \) is: \[ \boxed{3} \]

To find the numerical value of \( x \) in the activation energy expression \( 1.65 \times 10^x \, \text{J/mol} \), we can use the Arrhenius equation, which relates the rate constant \( k \) to the temperature \( T \) and the activation energy \( E_a \): \[ k = A e^{-\frac{E_a}{RT}} \] Where: - \( k \) is the rate constant, ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@) C and 4.5 xx 10^(7)s^(-1) at 100^(@) C. Calculate the value of activation energy for the reaction (R=8.314 J K^(-1)mol^(-1))

The rate constant of a reaction is 1.2 xx10^(-3) s^(-1) at 30^@C and 2.1xx10^(-3)s^(-1) at 40^@C . Calculate the energy of activation of the reaction.

Rate constant k = 1.2 xx 10^(3) mol^(-1) L s^(-1) and E_(a) = 2.0 xx 10^(2) kJ mol^(-1) . When T rarr oo :

If the rate constant of reaction k=2times10^(-6)s^(-1)atm^(-1) . Its value in dm^(3)mol^(-1)s^(-1) is

If the rate constant of a reaction is 3.0 mol L^(-1)s^(-1) at 700 K and 30 mol L^(-1)s^(-1) at 800 K, what is the energy of activation for this reaction? R = 8.314 JK^(-1) mol^(-1)

Identify the order of a reaction for each of the following rate constants: i) k=2.3 xx 10^(-5)L mol^(-1)s^(-1) ii) k= 3 xx 10^(4)s^(-1) .

Identify the reaction order from each of the following rate. i) k=2.3 xx 10^(5) L mol^(-1)s^(-1) ii) k=2.3 xx 10^(5)Lmol^(-1)s^(-1) ii) k=3.1 xx 10^(-4)s^(-1)