Home
Class 12
MATHS
Let y=y(x) be the solution of the differ...

Let y=y(x) be the solution of the differential equation,
`dy/dx+y tan x=2x+x^(2)tanx, x in(-pi/2,pi/2),` such that
y(0)= 1. Then

A

`y'((pi)/(4)) -y'(-(pi)/(4)) = pi - sqrt2`

B

`y((pi)/(4) -y (-(pi)/(4)) = sqrt2`

C

`y((pi)/(4)) + y(-(pi)/(4)) = (pi^(2))/(2) + 2`

D

`y'((pi)/(4)) + y'(-(pi)/(4)) = -sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A

`(dy)/(dx) + y.tan x = 2x + x^(2) tan x`
`I.F. = e^(int tan x dx) = e^(log|sec x|) = sec x`
`y(sec x) = int (2x + x^(2) tan x) sec x dx + c = int 2x sec x dx + int x^(2) tan x sec x dx = x^(2) sec x + c`
`y = x^(2) + c. cosx rArr y(0) = 1 rArr c =1 rArr y = x^(2) + cos x rArr y' = 2x - sin x`
`rArr y'((pi)/(4)) = (pi)/(2) - (1)/(sqrt2) rArr y'(-(pi)/(4)) = (-pi)/(2) + (1)/(sqrt2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution differential equation (dy)/(dx)+y tan x=2x+x^(2)tan x is

Solve the differential equation (dy)/(dx) + y tan x = 2x + x ^(2)tanx

Solution of the differential equation y dx+(x-y^(2))dy=0 is

If y=y(x) be the solution of differential equation dy/dx +tanx*y=sinx . If y(0)=0 Then y(pi/4)= ?

The Solution of the differential equation (dy)/(dx)=tan ((y)/(x))+(y)/(x) is

Let y = y (x) be the solution of the differential equation cos x (dy)/(dx) + 2y sin x = sin 2x , x in (0, pi/2) . If y(pi//3) = 0, " then " y(pi//4) is equal to :

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

The solution of the differential equation (dy)/(dx)="tan"((y)/(x))+(y)/(x) is