Home
Class 12
MATHS
If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2)...

If `int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C`, where C is a constant of integration, then g(-1) is equal to

A

1

B

`-1`

C

`-(5)/(2)`

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I = int (x^(2))^(2) e^(-x^(2)) x dx = g(x) e^(-x^(2)) + c`
Let `x^(2) = t, 2xdx = dt = (1)/(2) int t^(2) e^(-t) dt = (1)/(2) [-e^(-t)t^(2) + int 2t e^(-t) dt] = (1)/(2) [-e^(-t) t^(2) -2t e^(-t) + int 2e^(-t) dt]`
`= (1)/(2) [-e^(-t) .t^(2) - 2te^(-t) - 2e^(-t)] =e^(-t) [(-t^(2) -2t -2)/(2)] = e^(-x^(2)) [(-x^(4)-2x^(2) -2)/(2)]`
`g(x) = (-x^(4) -2x^(2) -2)/(2) rArr g(-1) = (-1 -2-2)/(2) = -(5)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

If int(x)/(x+1+e^(x))dx=px+qln|x+1+e^(x)|+c , where c is the constant of integration, then p+q is equal to

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

If int(2e^(x) +3e^(-x))/(4e^(x)+7e^(-x))dx=(1)/(14)(ux+v log_(e ) (4e^(x)+7e^(-x)))+C , where C is a constant of integration, then u+v is equal to ________.

If int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int tan^(5)x dx =Atan^(4)x+Btan^(2)x+g(x)+C , where C is constant of integration and g(0)=0, then