Home
Class 12
MATHS
Let f (x) = log e (sinx ), ( 0 lt x lt p...

Let `f (x) = log _e (sinx ), ( 0 lt x lt pi ) and g(x) = sin ^(-1) (e ^(-x)), (x ge 0)`. If `alpha` is a positive real number such that ` a = ( fog)' ( alpha ) and b = (fog ) ( alpha )`, then

A

`a alpha^(2) + b alpha -a = -2 alpha^(2)`

B

`a alpha^(2) + b alpha + a = 0`

C

`a alpha^(2) - b alpha -a = 1`

D

`a alpha^(2) - b alpha - a = 0`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x) = log_(e) (sin x)`
`g(x) = sin^(-1) (e^(-x))`
`f(g(x)) = log (sin sin^(-1) e^(-x)) = -x`
`(fog)'= -1 = a`
`(fog) (alpha) = -alpha = b`
`a = -1 and b = -alpha` satisfies option (3).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=logx and g(x)=e^(x) , then (fog) (x) is:

If f(x)=ln(sin x) and g(x)=sin^(-1)(e^(-x)) for all x in(0,pi) and f(g(alpha))=b and (f(g(x))' at x=alpha is a then which is true.

If f(x)=e^(x),g(x)=log e^(x) then find fog and gof

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) If h (x) = (f (x))/(g (x)) then h'(alpha) equals to:

Find fog and gof , if f(x)=e^x , g(x)=(log)_e x

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let fog (x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is