Home
Class 12
MATHS
Value of underset(ntoinfty)(lim)((n+1)^(...

Value of `underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3))` is equal to

A

`4/3(2)^(3//4)`

B

`3/4(2)^(4//3)-4/3`

C

`4/3(2)^(4//3)`

D

`3/4(2)^(4//3)-3/4`

Text Solution

Verified by Experts

The correct Answer is:
D

`lim_(n to infty) ((n+1)^(1//3)/n^(4//3) + (n+2)^(1//3)/(n^(4//3) +……..+(2n)^(1//3)/n^(4//3)))`
`lim_(n to infty) sum_(r=1)^(n) (n+r)^(1//3)/n^(4//3), lim_(n to infty)sum_(r=1)^(n)(n^(1//3)(1+r/n)^(1//3))/(n^(4//3))`
`lim_(0)^(1)(1+x)^(1//3) dx`
`[(1+x)^(4//3)/(4//3)]_(0)^(1) rArr (2^(4//3))/(4//3) -1/(4//3) rarr 3/4 .2^(4//3) - 3/4`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+((n+2)^(1/3))/(n^(4/3))+.....+((2n)^(1/3))/(n^(4/3))) is equal to

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

The value of lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n) is equal to

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to