Home
Class 12
MATHS
The value of int(0)^(2pi)[sin2x(1+cos3x)...

The value of `int_(0)^(2pi)[sin2x(1+cos3x)]` dx, where [t] denotes

A

`-pi`

B

`2pi`

C

`pi`

D

`-2pi`

Text Solution

Verified by Experts

The correct Answer is:
A

`int_(0)^(2pi)[sin2x(1+cos 3x)]dx`
Let `I=int_(0)^(2pi)[sin2x(1+cos3x)]dx`…………..(1)
`I=int_(0)^(2pi)[sin2(2pi-x)(1+cos3(2pi-x)]dx`
`I=int_(0)^(2pi)[-sin2x(1+cos 3x)]dx`……………(ii)
(1) + (2)
`2I = int_(0)^(2pi)(-1)dx`
`[x] +[-x]=-1`
`2z =-2pi rArr I=-pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

Value of int_(0)^(2 pi)[sin2x(1+cos3x)]dx (where [.] denotes greatest integer fucntion)

int_(0)^( pi/2)(sin x)/(1+cos x)dx

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

int_(0)^(3(pi)/(2))sin[(2x)/(pi)]dx, where [.] denotes the

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(-g)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes greatest integer function is

The value of int_(0)^(2 pi)|cos x-sin x|dx is