Home
Class 12
MATHS
The sum (3 xx 1^(3))/(1^(2)) (5 xx (1^...

The sum
`(3 xx 1^(3))/(1^(2)) (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))` upto 10th term is

A

680

B

620

C

660

D

600

Text Solution

Verified by Experts

The correct Answer is:
C

`T_(r)=((2r+1)(1^(3) +2^(3)+…….+r^(3))/(1^(2) +2^(2)+………….+r^(2)))`
`T_(r) =((2r+1)((r(r+1))/2)^(2))/(r(r+1)(2r+1))/6`
`T_(r) = 3/2r(r+1)`
Sum up to 10th term `=3/2sum_(r=1)^(10)r(r+1)=660`
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum (3xx1^(3))/(1^(2))+(5xx(1^(3)+2^(3)))/(1^(2)+2^(2))+(7xx(1^(3)+2^(3)+3^(3)))/(1^(2)+2^(2)+3^(2))

The sum (3xx1^3)/1^2+ (5xx(1^3+2^3))/(1^2+2^2)+...=

(2^2 xx 3^2 )/(2^(-2)) xx 3^(-1)

3/(1^2 2^2)+5/(2^2 3^2)+7/(3^2 4^2)+ . . . upto 10th term

the sum (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto 11 terms

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

The sum of (3)/(1^(3))+(5)/(1^(3)+2^(3))+(7)/(1^(3)+2^(3)+3^(3))+...... upto 11 terms is equal to

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

(2/7)^3xx(1/2)^3

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto n terms,is