Home
Class 12
MATHS
If a gt 0 and z=(1+i)^2/(a-1) has magni...

If `a gt 0 and z=(1+i)^2/(a-1)` has magnitude `sqrt(2/5) "the" bar z is ` equal to

Text Solution

Verified by Experts

The correct Answer is:
5

`|z|=2/sqrt(a^(2)+1) = sqrt(2/5)`
`rArr 4/(a^(2)+1) = 2/5 rArr a^(2) + 1=10 rArr a^(2) =9 rArr a=3` (since `a gt 0`)
`t=(2t)/(3-i)`
`barz=-(2t)/(3+i) rArr barz =(-2t(3-i))/(10)`
`barz =(-6t -2)/10 rArr barz=-1/5 -3/5i`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a gt 0 and z=(1+i)^2/(a- i) has magnitude sqrt(2/5) then barz is equal to

Let z=((1+i)^(2))/(a-i),(a>0) and |z|=sqrt((2)/(5)) then z is equal to

Let z=((1+i)^(2))/(a-i)(agta) and |z|=sqrt((2)/(5)) , then overline(z) is equal to

If z+sqrt(2)|z+1|+i=0, then z equals

If e^(x)=(sqrt(1+z)-sqrt(1-z))/(sqrt(1+z)+sqrt(1-z)) and tan (y/2)=sqrt((1-z)/(1+z)) then the value of (dy)/(dx) at z=1 is equal to to

If z=1+i sqrt(3), then |arg(z)|+|arg(bar(z))| equals to

If |z_(1)| = 2 and (1-i)z_(2) + (1+i)bar(z)_(2) = 8 sqrt(2) , then

If a complex number z satisfies z + sqrt(2) |z + 1| + i=0 , then |z| is equal to :