Home
Class 12
MATHS
Sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is...

`Sin^(-1)((12)/(13))-sin^(-1)((3)/(5))` is equal to

A

`(pi)/(2)-cos^(-1)((9)/(65))`

B

`pi-cos^(-1)((33)/(65))`

C

`(pi)/(2)-sin^(-1)((56)/(65))`

D

`pi-sin^(-1)((63)/(65))`

Text Solution

Verified by Experts

The correct Answer is:
C

`sin.(sqrt2)/(sqrt3)-sin^(-1).(3)/(5)`
`=cos^(-1).(5)/(13)-cos^(-1).(4)/(5)=cos^(-1)[(5)/(13).(4)/(5)+(12)/(13).(3)/(5)]-((5)/(13)lt(4)/(5))=cos^(-1)[(56)/(65)]=(pi)/(2)-sin^(-1).(56)/(65)`
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)((12)/(13))+sin^(-1)((3)/(5)) =

sin(cos^(-1)(3/5)) is equal to

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

sin[3sin^(-1)((1)/(5))] is equal to

"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5) is equal to

What is sin [sin^(-1)((3)/(5))+sin^(-1)((4)/(5))] equal to ?

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

The value of tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) is equal to (pi)/(4)b*(5 pi)/(12)c*(3 pi)/(4)d.(13 pi)/(12)

The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

What is "sin"^(-1)(3)/(5)- "sin"^(-1)(4)/(5) equal to ?